6,812 research outputs found

    Delayed fracture of silicon: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    Get PDF
    Bar specimens were cut from ingots of single crystal silicon, and acid etched prior to testing. Artificial surface flaws were introduced in specimens by indentation with a Knoop hardness tester. The specimens were loaded in four-point bending to 95 percent of the nominal fracture stress, while keeping the surface area, containing the flaw, wet with test liquids. No evidence of delayed fracture, and, therefore stress corrosion, of single crystal silicon was observed for liquid environments including water, acetone, and aqueous solutions of NaCl, NH4OH, and HNO3, when tested with a flaw parallel to a (110) surface. The fracture toughness was calculated

    Photovoltaic system test facility electromagnetic interference measurements

    Get PDF
    Field strength measurements on a single row of panels indicates that the operational mode of the array as configured presents no radiated EMI problems. Only one relatively significant frequency band near 200 kHz showed any degree of intensity (9 muV/m including a background level of 5 muV/m). The level was measured very near the array (at 20 ft distance) while Federal Communications Commission (FCC) regulations limit spurious emissions to 15 muV/m at 1,000 ft. No field strength readings could be obtained even at 35 ft distant

    Conceptual design studies for large free-flying solar-reflector spacecraft

    Get PDF
    The 1 km diameter reflecting film surface is supported by a lightweight structure which may be automatically deployed after launch in the Space Shuttle. A twin rotor, control moment gyroscope, with deployable rotors, is included as a primary control actuator. The vehicle has a total specific mass of less than 12 g/sq m including allowances for all required subsystems. The structural elements were sized to accommodate the loads of a typical SOLARES type mission where a swam of these free flying satellites is employed to concentrate sunlight on a number of energy conversion stations on the ground

    Parameters for Twisted Representations

    Full text link
    The study of Hermitian forms on a real reductive group GG gives rise, in the unequal rank case, to a new class of Kazhdan-Lusztig-Vogan polynomials. These are associated with an outer automorphism δ\delta of GG, and are related to representations of the extended group . These polynomials were defined geometrically by Lusztig and Vogan in "Quasisplit Hecke Algebras and Symmetric Spaces", Duke Math. J. 163 (2014), 983--1034. In order to use their results to compute the polynomials, one needs to describe explicitly the extension of representations to the extended group. This paper analyzes these extensions, and thereby gives a complete algorithm for computing the polynomials. This algorithm is being implemented in the Atlas of Lie Groups and Representations software

    Equivalence of domains for hyperbolic Hubbard-Stratonovich transformations

    Full text link
    We settle a long standing issue concerning the traditional derivation of non-compact non-linear sigma models in the theory of disordered electron systems: the hyperbolic Hubbard-Stratonovich (HS) transformation of Pruisken-Schaefer type. Only recently the validity of such transformations was proved in the case of U(p,q) (non-compact unitary) and O(p,q) (non-compact orthogonal) symmetry. In this article we give a proof for general non-compact symmetry groups. Moreover we show that the Pruisken-Schaefer type transformations are related to other variants of the HS transformation by deformation of the domain of integration. In particular we clarify the origin of surprising sign factors which were recently discovered in the case of orthogonal symmetry.Comment: 30 pages, 3 figure

    Lie series for celestial mechanics, accelerators, satellite stabilization and optimization

    Get PDF
    Lie series applications to celestial mechanics, accelerators, satellite orbits, and optimizatio

    Calculations for Mirror Symmetry with D-branes

    Full text link
    We study normal functions capturing D-brane superpotentials on several one- and two-parameter Calabi-Yau hypersurfaces and complete intersections in weighted projective space. We calculate in the B-model and interpret the results using mirror symmetry in the large volume regime, albeit without identifying the precise A-model geometry in all cases. We identify new classes of extensions of Picard-Fuchs equations, as well as a novel type of topology changing phase transition involving quantum D-branes. A 4-d domain wall which is obtained in one region of closed string moduli space from wrapping a four-chain interpolating between two Lagrangian submanifolds is, for other values of the parameters, represented by a disk ending on a single Lagrangian.Comment: 42 page

    The hot and cold interstellar matter of early type galaxies and their radio emission

    Get PDF
    Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths

    The Cold and Hot Gas Content of Fine-Structure E and S0 Galaxies

    Full text link
    We investigate trends of the cold and hot gas content of early-type galaxies with the presence of optical morphological peculiarities, as measured by the fine-structure index (Sigma). HI mapping observations from the literature are used to track the cold-gas content, and archival ROSAT PSPC data are used to quantify the hot-gas content. We find that E and S0 galaxies with a high incidence of optical peculiarities are exclusively X-ray underluminous and, therefore, deficient in hot gas. In contrast, more relaxed galaxies with little or no signs of optical peculiarities span a wide range of X-ray luminosities. That is, the X-ray excess anticorrelates with Sigma. There appears to be no similar trend of cold-gas content with either fine-structure index or X-ray content. The fact that only apparently relaxed E and S0 galaxies are strong X-ray emitters is consistent with the hypothesis that after strong disturbances such as a merger hot-gas halos build up over a time scale of several gigayears. This is consistent with the expected mass loss from stars.Comment: 12 pages, latex, 5 figures. Accepted for publication in A
    • …
    corecore