976 research outputs found
Stellar population synthesis models between 2.5 and 5 {\mu}m based on the empirical IRTF stellar library
We present the first single-burst stellar population models in the infrared
wavelength range between 2.5 and 5 {\mu}m which are exclusively based on
empirical stellar spectra. Our models take as input 180 spectra from the
stellar IRTF (Infrared Telescope Facility) library. Our final single-burst
stellar population models are calculated based on two different sets of
isochrones and various types of initial mass functions of different slopes,
ages larger than 1 Gyr and metallicities between [Fe/H] = -0.70 and 0.26. They
are made available online to the scientific community on the MILES web page. We
analyse the behaviour of the Spitzer [3.6]-[4.5] colour calculated from our
single stellar population models and find only slight dependences on both
metallicity and age. When comparing to the colours of observed early-type
galaxies, we find a good agreement for older, more massive galaxies that
resemble a single-burst population. Younger, less massive and more metal-poor
galaxies show redder colours with respect to our models. This mismatch can be
explained by a more extended star formation history of these galaxies which
includes a metal-poor or/and young population. Moreover, the colours derived
from our models agree very well with most other models available in this
wavelength range. We confirm that the mass-to-light ratio determined in the
Spitzer [3.6] {\mu}m band changes much less as a function of both age and
metallicity than in the optical bands.Comment: 25 pages, 19 figures, published in MNRAS, models can be downloaded
from http://miles.iac.e
Star formation in the central regions of galaxies
Massive star formation in the central regions of spiral galaxies plays an
important role in the dynamical and secular evolution of their hosts. Here, we
summarise a number of recent investigations of the star formation history and
the physical conditions of the gas in circumnuclear regions, to illustrate not
only the detailed results one can achieve, but also the potential of using
state-of-the-art spectroscopic and analysis techniques in researching the
central regions of galaxies in general. We review how the star formation
history of nuclear rings confirms that they are long-lived and stable
configurations. Gas flows in from the disk, through the bar, and into the ring,
where successive episodes of massive star formation occur. Analysing the ring
in NGC 7742 in particular, we determine the physical conditions of the line
emitting gas using a combination of ionisation and stellar population
modelling, concluding that the origin of the nuclear ring in this non-barred
galaxy lies in a recent minor merger with a small gas-rich galaxy.Comment: Invited contribution, to appear in "Mapping the Galaxy and other
galaxies", Eds. K. Wada and F. Combes, Springer, in pres
Dynamics of Inner Galactic Disks: The Striking Case of M100
We investigate gas dynamics in the presence of a double inner Lindblad
resonance within a barred disk galaxy. Using an example of a prominent spiral,
M100, we reproduce the basic central morphology, including four dominant
regions of star formation corresponding to the compression maxima in the gas.
These active star forming sites delineate an inner boundary (so-called nuclear
ring) of a rather broad oval detected in the near infrared. We find that
inclusion of self-gravitational effects in the gas is necessary in order to
understand its behavior in the vicinity of the resonances and its subsequent
evolution. The self-gravity of the gas is also crucial to estimate the effect
of a massive nuclear ring on periodic orbits in the stellar bar.Comment: 11 pages, postscript, compressed, uuencoded. Paper and 4 figures
available at ftp://pa.uky.edu/shlosman/nobel or at
http://www.pa.uky.edu/~shlosman/ . Invited talk at the Centennial Nobel
Symposium on "Barred Galaxies and Circumnuclear Activity," A.Sandquist et al.
(Eds.), Springer-Verlag, in pres
The Central Region in M100: Observations and Modeling
We present new high-resolution observations of the center of the late-type
spiral M100 (NGC 4321) supplemented by 3D numerical modeling of stellar and gas
dynamics, including star formation (SF). NIR imaging has revealed a stellar
bar, previously inferred from optical and 21 cm observations, and an
ovally-shaped ring-like structure in the plane of the disk. The K isophotes
become progressively elongated and skewed to the position angle of the bar
(outside and inside the `ring') forming an inner bar-like region. The galaxy
exhibits a circumnuclear starburst in the inner part of the K `ring'. Two
maxima of the K emission have been observed to lie symmetrically with respect
to the nucleus and equidistant from it slightly leading the stellar bar. We
interpret the twists in the K isophotes as being indicative of the presence of
a double inner Lindblad resonance (ILR) and test this hypothesis by modeling
the gas flow in a self-consistent gas + stars disk embedded in a halo, with an
overall NGC4321-like mass distribution. We have reproduced the basic morphology
of the region (the bar, the large scale trailing shocks, two symmetric K peaks
corresponding to gas compression maxima which lie at the caustic formed by the
interaction of a pair of trailing and leading shocks in the vicinity of the
inner ILR, both peaks being sites of SF, and two additional zones of SF
corresponding to the gas compression maxima, referred usually as `twin peaks').Comment: 31 pages, postscript, compressed, uuencoded. 21 figures available in
postscript, compressed form by anonymous ftp from
ftp://asta.pa.uky.edu/shlosman/main100 , mget *.ps.Z. To appear in Ap.
MILES extended: Stellar population synthesis models from the optical to the infrared
We present the first single-burst stellar population models which covers the
optical and the infrared wavelength range between 3500 and 50000 Angstrom and
which are exclusively based on empirical stellar spectra. To obtain these joint
models, we combined the extended MILES models in the optical with our new
infrared models that are based on the IRTF (Infrared Telescope Facility)
library. The latter are available only for a limited range in terms of both age
and metallicity. Our combined single-burst stellar population models were
calculated for ages larger than 1 Gyr, for metallicities between [Fe/H] = -0.40
and 0.26, for initial mass functions of various types and slopes, and on the
basis of two different sets of isochrones. They are available to the scientific
community on the MILES web page. We checked the internal consistency of our
models and compared their colour predictions to those of other models that are
available in the literature. Optical and near infrared colours that are
measured from our models are found to reproduce the colours well that were
observed for various samples of early-type galaxies. Our models will enable a
detailed analysis of the stellar populations of observed galaxies.Comment: 9 pages, 10 figures, published in A&
Evidence for the Large-Scale Dissociation of Molecular Gas in the Inner Spiral Arms of M81
We compare the detailed distributions of HI, H alpha, and 150 nm far-UV
continuum emission in the spiral arms of M81 at a resolution of 9" (linear
resolution 150 pc at 3.7 Mpc distance). The bright H alpha emission peaks are
always associated with peaks in the far-UV emission. The converse is not always
true; there are many regions of far-UV emission with little corresponding H
alpha. The HI and the far-UV are always closely associated, in the sense that
the HI is often brightest around the edges of the far-UV emission. The effects
of extinction on the morphology are small, even in the far-UV. Extensive far-UV
emission, often with little corresponding H alpha, indicates the presence of
many ``B-stars'', which produce mostly non-ionizing UV photons. These far-UV
photons dissociate a small fraction of an extensive layer of H_2 into HI. The
observed morphology can be understood if ``chimneys'' are common in the spiral
arms of M81, where holes are blown out of the galactic disk, exposing the
bright HII regions and the corresponding far-UV associated with vigorous star
formation. These ``naked'' star-forming regions show little obscuration. H_2 is
turned into HI by UV photons impinging on the interior surfaces of these
chimneys. The intensity of the far-UV radiation measured by UIT can dissociate
the underlying H_2 with a typical density of ~10 H nucleii cm**-3 to produce
the observed amount of HI in the spiral arms of M81. Except for thin surface
layers locally heated in these photo-dissociation regions close to the far-UV
sources, the bulk of the molecular gas in the inner disk of M81 is apparently
too cold to produce much 12CO(1-0) emission.Comment: 12 pages, Latex. 8 postscript files. Better quality versions of the
figures available from ftp://star.herts.ac.uk/pub/Knapen/m81uv . Accepted,
Ap
The central region of M83: Massive star formation, kinematics, and the location and origin of the nucleus
We report new near-IR integral field spectroscopy of the central starburst
region of the barred spiral galaxy M83 obtained with CIRPASS on Gemini-S, which
we analyse in conjunction with GHaFaS Fabry-Perot data, an AAT IRIS2 Ks-band
image, and near- and mid-IR imaging from the Hubble and Spitzer space
telescopes. The bulk of the current star formation activity is hidden from
optical view by dust extinction, but is seen in the near- and mid-IR to the
north of the nucleus. This region is being fed by inflow of gas through the bar
of M83, traced by the prominent dust lane entering into the circumnuclear
region from the north. An analysis of stellar ages confirms that the youngest
stars are indeed in the northwest. A gradual age gradient, with older stars
further to the south, characterises the well-known star-forming arc in the
central region of M83. Detailed analyses of the Pa beta ionised gas kinematics
and near-IR imaging confirm that the kinematic centre coincides with the
photometric centre of M83, and that these are offset significantly, by about 3
arcsec or 60 pc, from the visible nucleus of the galaxy. We discuss two
possible options, the first of which postulates that the kinematic and
photometric centre traces a galaxy nucleus hidden by a substantial amount of
dust extinction, in the range A_V=3-10 mag. By combining this information with
kinematic results and using arguments from the literature, we conclude that
such a scenario is, however, unlikely, as is the existence of other "hidden"
nuclei in M83. We thus concur with recent authors and favour a second option,
in which the nucleus of the galaxy is offset from its kinematic and photometric
centre. This is presumably a result of some past interaction, possibly related
to the event which lies at the origin of the disturbance of the outer disk of
the galaxy. (Abridged)Comment: MNRAS, in press; 16 pages latex, 15 figure
- …