815 research outputs found

    Star formation in the central regions of galaxies

    Get PDF
    Massive star formation in the central regions of spiral galaxies plays an important role in the dynamical and secular evolution of their hosts. Here, we summarise a number of recent investigations of the star formation history and the physical conditions of the gas in circumnuclear regions, to illustrate not only the detailed results one can achieve, but also the potential of using state-of-the-art spectroscopic and analysis techniques in researching the central regions of galaxies in general. We review how the star formation history of nuclear rings confirms that they are long-lived and stable configurations. Gas flows in from the disk, through the bar, and into the ring, where successive episodes of massive star formation occur. Analysing the ring in NGC 7742 in particular, we determine the physical conditions of the line emitting gas using a combination of ionisation and stellar population modelling, concluding that the origin of the nuclear ring in this non-barred galaxy lies in a recent minor merger with a small gas-rich galaxy.Comment: Invited contribution, to appear in "Mapping the Galaxy and other galaxies", Eds. K. Wada and F. Combes, Springer, in pres

    The central region of M83: Massive star formation, kinematics, and the location and origin of the nucleus

    Full text link
    We report new near-IR integral field spectroscopy of the central starburst region of the barred spiral galaxy M83 obtained with CIRPASS on Gemini-S, which we analyse in conjunction with GHaFaS Fabry-Perot data, an AAT IRIS2 Ks-band image, and near- and mid-IR imaging from the Hubble and Spitzer space telescopes. The bulk of the current star formation activity is hidden from optical view by dust extinction, but is seen in the near- and mid-IR to the north of the nucleus. This region is being fed by inflow of gas through the bar of M83, traced by the prominent dust lane entering into the circumnuclear region from the north. An analysis of stellar ages confirms that the youngest stars are indeed in the northwest. A gradual age gradient, with older stars further to the south, characterises the well-known star-forming arc in the central region of M83. Detailed analyses of the Pa beta ionised gas kinematics and near-IR imaging confirm that the kinematic centre coincides with the photometric centre of M83, and that these are offset significantly, by about 3 arcsec or 60 pc, from the visible nucleus of the galaxy. We discuss two possible options, the first of which postulates that the kinematic and photometric centre traces a galaxy nucleus hidden by a substantial amount of dust extinction, in the range A_V=3-10 mag. By combining this information with kinematic results and using arguments from the literature, we conclude that such a scenario is, however, unlikely, as is the existence of other "hidden" nuclei in M83. We thus concur with recent authors and favour a second option, in which the nucleus of the galaxy is offset from its kinematic and photometric centre. This is presumably a result of some past interaction, possibly related to the event which lies at the origin of the disturbance of the outer disk of the galaxy. (Abridged)Comment: MNRAS, in press; 16 pages latex, 15 figure

    Evidence for the Large-Scale Dissociation of Molecular Gas in the Inner Spiral Arms of M81

    Get PDF
    We compare the detailed distributions of HI, H alpha, and 150 nm far-UV continuum emission in the spiral arms of M81 at a resolution of 9" (linear resolution 150 pc at 3.7 Mpc distance). The bright H alpha emission peaks are always associated with peaks in the far-UV emission. The converse is not always true; there are many regions of far-UV emission with little corresponding H alpha. The HI and the far-UV are always closely associated, in the sense that the HI is often brightest around the edges of the far-UV emission. The effects of extinction on the morphology are small, even in the far-UV. Extensive far-UV emission, often with little corresponding H alpha, indicates the presence of many ``B-stars'', which produce mostly non-ionizing UV photons. These far-UV photons dissociate a small fraction of an extensive layer of H_2 into HI. The observed morphology can be understood if ``chimneys'' are common in the spiral arms of M81, where holes are blown out of the galactic disk, exposing the bright HII regions and the corresponding far-UV associated with vigorous star formation. These ``naked'' star-forming regions show little obscuration. H_2 is turned into HI by UV photons impinging on the interior surfaces of these chimneys. The intensity of the far-UV radiation measured by UIT can dissociate the underlying H_2 with a typical density of ~10 H nucleii cm**-3 to produce the observed amount of HI in the spiral arms of M81. Except for thin surface layers locally heated in these photo-dissociation regions close to the far-UV sources, the bulk of the molecular gas in the inner disk of M81 is apparently too cold to produce much 12CO(1-0) emission.Comment: 12 pages, Latex. 8 postscript files. Better quality versions of the figures available from ftp://star.herts.ac.uk/pub/Knapen/m81uv . Accepted, Ap

    A composite HII region luminosity function in H alpha of unprecedented statistical weight

    Full text link
    Context. Statistical properties of HII region populations in disk galaxies yield important clues to the physics of massive star formation. Aims. We present a set of HII region catalogues and luminosity functions for a sample of 56 spiral galaxies in order to derive the most general form of their luminosity function. Methods. HII region luminosity functions are derived for individual galaxies which, after photometric calibration, are summed to form a total luminosity function comprising 17,797 HII regions from 53 galaxies. Results. The total luminosity function, above its lower limit of completeness, is clearly best fitted by a double power law with a significantly steeper slope for the high luminosity portion of the function. This change of slope has been reported in the literature for individual galaxies, and occurs at a luminosity of log L = 38.6\pm0.1 (L in erg/s) which has been termed the Stromgren luminosity. A steep fall off in the luminosity function above log L = 40 is also noted, and is related to an upper limit to the luminosities of underlying massive stellar clusters. Detailed data are presented for the individual sample galaxies. Conclusions. The luminosity functions of HII regions in spiral galaxies show a two slope power law behaviour, with a significantly steeper slope for the high luminosity branch. This can be modelled by assuming that the high luminosity regions are density bounded, though the scenario is complicated by the inhomogeneity of the ionized interstellar medium. The break, irrespective of its origin, is of potential use as a distance indicator for disc galaxies.Comment: Accepted for publication as a Letter in Astronomy & Astrophysics. Latex with postscript figures. Online-only tables and figures are included in this preprint. The HII region catalogues for 56 galaxies will be published electronically on the CDS but are available also on request from the author
    corecore