375 research outputs found

    Measurement of Blade Deflection of an Unmanned Intermeshing Rotor Helicopter

    Get PDF
    The dynamic behavior of intermeshing rotor blades is complex and subjected to rotor-rotor-interactions like oblique blade-vortex and blade-wake interactions. To gain a better understanding of these effects a blade deflection measurement method is proposed in this paper. The method is based on a single camera per rotor blade depicting the rotor blade from a position fixed to the rotor head. Due to the mounting position of the camera close to the rotational plane the method is called In-Plane Blade Deflection Measurement (IBDM). The basic principles, data processing and measurement accuracy are presented in the paper. The major advantages of the proposed method are the applicability to both, flight and wind tunnel trials, as well as the usability for multi-rotor configurations having a significant rotor overlap. Furthermore comparisons to other blade deflection measurement methods are presented. Finally, experimental data of a flight test of an unmanned intermeshing helicopter is presented

    Donor binding energy and thermally activated persistent photoconductivity in high mobility (001) AlAs quantum wells

    Full text link
    A doping series of AlAs (001) quantum wells with Si delta-modulation doping on both sides reveals different dark and post-illumination saturation densities, as well as temperature dependent photoconductivity. The lower dark two-dimensional electron density saturation is explained assuming deep binding energy of Delta_DK = 65.2 meV for Si-donors in the dark. Persistent photoconductivity (PPC) is observed upon illumination, with higher saturation density indicating shallow post-illumination donor binding energy. The photoconductivity is thermally activated, with 4 K illumination requiring post-illumination annealing to T = 30 K to saturate the PPC. Dark and post-illumination doping efficiencies are reported.Comment: The values of binding energy changed from previous versions because of a better understanding for the dielectric permittivity. Also, the Gamma - X donor states are better explaine

    Single-valley high-mobility (110) AlAs quantum wells with anisotropic mass

    Full text link
    We studied a doping series of (110)-oriented AlAs quantum wells (QWs) and observed transport evidence of single anisotropic-mass valley occupancy for the electrons in a 150 \AA wide QW. Our calculations of strain and quantum confinement for these samples predict single anisotropic-mass valley occupancy for well widths WW greater than 53 \AA. Below this, double-valley occupation is predicted such that the longitudinal mass axes are collinear. We observed mobility anisotropy in the electronic transport along the crystallographic directions in the ratio of 2.8, attributed to the mass anisotropy as well as anisotropic scattering of the electrons in the X-valley of AlAs

    Valley degeneracy in biaxially strained aluminum arsenide quantum wells

    Full text link
    This paper details a complete formalism for calculating electron subband energy and degeneracy in strained multi-valley quantum wells grown along any orientation with explicit results for the AlAs quantum well case. A standardized rotation matrix is defined to transform from the conventional- cubic-cell basis to the quantum-well-transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) quantum wells are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain in the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The notation is generalized to include miscut angles, and can be adapted to other multi-valley systems. To help classify anisotropic inter-valley scattering events, a new primitive unit cell is defined in momentum space which allows one to distinguish purely in-plane inter-valley scattering events from those that requires an out-of-plane momentum scattering component.Comment: 17 pages, 4 figures, 2 table

    Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers

    Full text link
    Coherent neutrino-nucleon scattering offers a unique approach in the search for physics beyond the Standard Model. When used in conjunction with mono-energetic neutrino sources, the technique can be sensitive to the existence of light sterile neutrinos. The ability to utilize such reactions has been limited in the past due to the extremely low energy threshold (10-50 eV) needed for detection. In this paper, we discuss an optimization of cryogenic solid state bolometers that enables reaching extremely low kinetic energy thresholds. We investigate the sensitivity of an array of such detectors to neutrino oscillations to sterile states. A recent analysis of available reactor data appears to favor the existence of such such a sterile neutrino with a mass splitting of Δmsterile21.5|\Delta m_{\rm sterile}|^2 \ge 1.5 eV2^2 and mixing strength of sin22θsterile=0.17±0.08\sin^2{2\theta_{\rm sterile}} = 0.17\pm 0.08 at 95% C.L. An array of such low-threshold detectors would be able to make a definitive statement as to the validity of the interpretation.Comment: 14 pages, 10 figures. Version 2: Temperature dependence on alpha fixed from earlier versio

    Bringing Lived Lives to Swift’s Asylum: a psychiatric hospital perspective

    Get PDF
    Background: Few “interventions” around suicide and stigma have reached into psychiatric institutions. Lived Lives is a science-arts approach to addressing suicide and stigma, informed by a psychobiographical and visual arts autopsy. The resulting artworks and mediated exhibition (Lived Lives), with artist, scientist and the Lived Lives families, co-curated by communities, has facilitated dialogue, response and public action around stigma-reduction, consistent with a community intervention. Recent evidence from Lived Lives moved us to consider how it may situate within a psychiatric institution, where stigma is chronically apparent. Methods: Lived Lives manifested in St. Patrick’s University Hospital (Ireland’s oldest and largest psychiatric hospital) in November 2017. The mediated exhibition was open to the public for 4 days. Audiences included service users, policy makers, health professionals, senior hospital administrators and members of the public. Opinions and feelings were collected. The event was documented. Bereavement support was available. A Clinician and an artist provided independent evaluation. Results: 86 participants engaged with the exhibition. 62% of participants were suicide-bereaved; 46% had experienced a mental health difficulty, and 35% had been suicidal in the past. 91% thought Lived Lives could be of benefit in the aftermath of a suicide death. Half of participants thought Lived Lives could help reduce suicidal feelings, whereas 88% thought it could benefit those with Mental Health difficulties. The emotional response was of a visceral nature, including fear, anger, sadness, disgust and anxiety. Bereavement support was occasionally called upon in a supportive capacity. Conclusions: Lived Lives sits comfortably in discomfort, unafraid to call out the home-truths about stigma and its pervasive and pernicious impact, and with restoring identity at its core. Lived Lives can operate within a psychiatric hospital, as well as in community. The challenge is to move it forward for greater exposure and impacts in at-risk communities

    The association between intraoperative hyperglycemia and cerebrovascular markers

    Get PDF
    BACKGROUND AND PURPOSE: Hyperglycemia can lead to an increased rate of apoptosis of microglial cells and to damaged neurons. The relation between hyperglycemia and cerebrovascular markers on MRI is unknown. Our aim was to study the association between intraoperative hyperglycemia and cerebrovascular markers.METHODS: In this further analysis of a subgroup investigation of the BIOCOG study, 65 older non-demented patients (median 72 years) were studied who underwent elective surgery of >= 60 minutes. Intraoperative blood glucose maximum was determined retrospectively in each patient. In these patients, preoperatively and at 3 months follow-up a MRI scan was performed and white matter hyperintensity (WMH) volume and shape, infarcts, and perfusion parameters were determined. Multivariable logistic regression analyses were performed to determine associations between preoperative cerebrovascular markers and occurrence of intraoperative hyperglycemia. Linear regression analyses were performed to assess the relation between intraoperative hyperglycemia and pre- to postoperative changes in WMH volume. Associations between intraoperative hyperglycemia and postoperative WMH volume at 3 months follow-up were also assessed by linear regression analyses.RESULTS: Eighteen patients showed intraoperative hyperglycemia (glucose maximum >= 150 mg/dL). A preoperative more smooth shape of periventricular and confluent WMH was related to the occurrence of intraoperative hyperglycemia [convexity: OR 33.318 (95 % CI (1.002 - 1107.950); p = 0.050]. Other preoperative cerebrovascular markers were not related to the occurrence of intraoperative hyperglycemia. Intraoperative hyperglycemia showed no relation with pre- to postoperative changes in WMH volume nor with postoperative WMH volume at 3 months follow-up.CONCLUSIONS: We found that a preoperative more smooth shape of periventricular and confluent WMH was related to the occurrence of intraoperative hyperglycemia. These findings may suggest that a similar underlying mechanism leads to a certain pattern of vascular brain abnormalities and an increased risk of hyperglycemia.Neuro Imaging Researc

    Pleniglacial dynamics in an oceanic central European loess landscape

    Get PDF
    Loess–palaeosol sequences (LPSs) of the oceanic-influenced European loess belt underwent frequent post-depositional processes induced by surface runoff or periglacial processes. The interpretation of such atypical LPSs is not straightforward, and they cannot be easily used for regional to continental correlations. Within the last few years, however, such sequences gained increased attention, as they are valuable archives for regional landscape dynamics. In this study, the Siersdorf LPS was analysed using a multi-proxy approach using sedimentological, geochemical, and spectrophotometric methods combined with luminescence dating and tentative malacological tests to unravel Pleniglacial dynamics of the Lower Rhine Embayment. A marshy wetland environment for the late Middle Pleniglacial to the early Upper Pleniglacial was shown by colour reflectance and grain size distribution. Age inversions from luminescence dating paired with geochemical and sedimentological data reveal long-lasting erosional processes during the early Upper Pleniglacial, which were constrained to a relatively small catchment with short transport ranges. The upper sequence shows typical marker horizons for the study area and indicate harsh, cold-arid conditions for the late Upper Pleniglacial. In comparison with other terrestrial archives, the Siersdorf LPS shows that the Lower Rhine Embayment was more diverse than previously assumed, regarding not only its geomorphological settings and related processes but also its ecosystems and environments.</p

    Energy landscape - a key concept for the dynamics of glasses and liquids

    Full text link
    There is a growing belief that the mode coupling theory is the proper microscopic theory for the dynamics of the undercooled liquid above a critical temperature T_c. In addition, there is some evidence that the system leaves the saddlepoints of the energy landscape to settle in the valleys at this critical temperature. Finally, there is a microscopic theory for the entropy at the calorimetric glass transition T_g by Mezard and Parisi, which allows to calculate the Kauzmann temperature from the atomic pair potentials. The dynamics of the frozen glass phase is at present limited to phenomenological models. In the spirit of the energy landscape concept, one considers an ensemble of independent asymmetric double-well potentials with a wide distribution of barrier heights and asymmetries (ADWP or Gilroy-Phillips model). The model gives an excellent description of the relaxation of glasses up to about T_g/4. Above this temperature, the interaction between different relaxation centers begins to play a role. One can show that the interaction reduces the number of relaxation centers needed to bring the shear modulus down to zero by a factor of three.Comment: Contribution to the III Workshop on Nonequilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, 22-27 September 2002, Pisa; 14 pages, 3 figures; Version 3 takes criticque at Pisa into account; final version 4 will be published in J.Phys.: Condens.Matte

    Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids

    Full text link
    Incoherent neutron scattering experiments are simulated for simple dynamic models: a glass (with a smooth distribution of harmonic vibrations) and a viscous liquid (described by schematic mode-coupling equations). In most situations multiple scattering has little influence upon spectral distributions, but it completely distorts the wavenumber-dependent amplitudes. This explains an anomaly observed in recent experiments
    corecore