7 research outputs found

    Development in Astronomy and Space Science in Africa

    Full text link
    The development of astronomy and space science in Africa has grown significantly over the past few years. These advancements make the United Nations Sustainable Development Goals more achievable, and open up the possibility of new beneficial collaborations.Comment: Paper published in Nature Astronomy. Figures 1 and 2 are included in the published version, that can be seen at https://rdcu.be/2oE

    The seasonal cycle of cloud radiative effects over Congo Basin based on CERES observation and comparison to CMIP6 models

    No full text
    This study investigates the seasonal variability of the cloud radiative effects (CREs) over Congo Basin (CB) using 15-year observations from Clouds and the Earth's Radiant Energy System (CERES) Energy Budget and Filled (EBAF) Ed4.1 level 3b dataset involving CERES and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on board Terra and Aqua satellites. The relationships between CREs and cloud properties such as total cloud fraction (TCF), cloud top height (CTH), cloud top temperature (CTT) and cloud optical thickness (COT) are checked. An evaluation of Coupled Model Intercomparison Project (CMIP) Phase 6 in capturing the seasonal cycle of CREs as well as the magnitudes of the CREs along the seasonal cycle is also performed. This study shows a net cloud cooling effect of −8.4 W/m2 and − 43.9 W/m2 respectively at the top of the atmosphere (TOA) and at the surface, leading to a net warming effect of 35.67 W/m2 in the atmosphere. This value implies a large energy source over the Central Africa (CA) atmospheric column. The associated relationships between CREs and cloud properties show that the shortwave CRE is more sensitive to TCF and optical thickness whereas its longwave counterparts is more sensitive to CTH, CTT and COT at the TOA and in the atmosphere. All of the four CMIP6 models used in this study can capture the spatial pattern of CREs as well as their seasonal cycle but misrepresent intensity of CREs. Results also show that a better-simulated TCF considerably reduces the intensity of the annual mean underestimation in both longwave and shortwave CRE for some CMIP6 models, but not for models with overestimated shortwave CRE

    Development in astronomy and space science in Africa

    Get PDF
    The development of astronomy and space science in Africa has grown significantly over the past few years. These advancements make the United Nations Sustainable Development Goals more achievable, and open up the possibility of new beneficial collaborations. © 2018 The Publisher.This paper is dedicated to all of the people who somehow contributed to the development of A&SS in Africa. Without them all of this would not be possible. In addition, this paper was inspired by sessions SS23 and LS7 during the 2018 European Week of A&SS (EWASS). Both sessions were supported by the UK Science and Technology Facilities Council, UK Royal Astronomical Society, International Astronomical Union Office of Astronomy for Development, European Astronomical Society, International Science Programme, and Development in Africa with Radio Astronomy project

    Intertropical Convergence Zone as the Possible Source Mechanism for Southward Propagating Medium-Scale Traveling Ionospheric Disturbances over South American Low-Latitude and Equatorial Region

    No full text
    This paper presents the Intertropical Convergence Zone (ITCZ) as the possible source mechanism of the medium-scale traveling ionospheric disturbances (MSTIDs) propagating to the southeast direction over the South American region. Using the data collected by the GNSS dual-frequency receivers network from January 2014 to December 2019, detrended TEC maps were generated to identify and characterize 144 MSTIDs propagating southeastward over the South American low-latitude and equatorial region. We also used images from the Geostationary Operational Environmental Satellite (GOES) 13 and 16 in the infrared (IR) and water vapor (WV) channel, and reanalisys data from the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) to study the daily features and seasonal migration of ITCZ. In the winter, when ITCZ migrates to the northern hemisphere around 10–15° N, 20 MSTIDs propagated southeastward. During summer, when the ITCZ lies within the continent, around 0–5° S 80 MSTIDs were observed to propagate southeastward; in the equinoxes (spring and fall), 44 MSTIDs were observed. Again, the MSTIDs propagating southeastward showed a clear seasonality of their local time dependence; in summer, the MSTIDs occurred frequently in the evening hours, whereas those in winter occurred during the daytime. We also found for the first time that the day-to-day observation of ITCZ position and MSTIDs propagation directions were consistent. With regard to these new findings, we report that the MSTIDs propagating southeastward over the South American region are possibly induced by the atmospheric gravity waves, which are proposed as being generated by the ITCZ in the troposphere. The mean distribution of the horizontal wavelength, period, and phase velocity are 698 ± 124 km, 38 ± 8 min, and 299 ± 89 m s−1, respectively. For the first time, we were able to use MSTID propagation directions as a proxy to study the source region
    corecore