1,912 research outputs found

    Sulfur reduction in sediments of marine and evaporite environments

    Get PDF
    Transformations of sulfur in sediments of ponds ranging in salinities from that of normal seawater to those of brines saturated with sodium chloride were examined. The chemistry of the sediment and pore waters were focused on with emphasis on the fate of sulfate reduction. The effects of increasing salinity on both forms of sulfur and microbial activity were determined. A unique set of chemical profiles and sulfate-reducing activity was found for the sediments of each of the sites examined. The quantity of organic matter in the salt pond sediments was significantly greater than that occurring in the adjacent intertidal site. The total quantitative and qualitative distribution of volatile fatty acids was also greater in the salt ponds. Volatile fatty acids increased with salinity

    Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei

    Full text link
    The 197Au(gamma,n) reaction is used as an activation standard for photodisintegration studies on astrophysically relevant nuclei. At the bremsstrahlung facility of the superconducting electron accelerator ELBE (Electron Linear accelerator of high Brilliance and low Emittance) of Forschungszentrum Dresden-Rossendorf, photoactivation measurements on 197Au have been performed with bremsstrahlung endpoint energies from 8.0 to 15.5 MeV. The measured activation yield is compared with previous experiments as well as with calculations using Hauser-Feshbach statistical models. It is shown that the experimental data are best described by a two-Lorentzian parametrization with taking the axial deformation of 197Au into account. The experimental 197Au(gamma,n) reaction yield measured at ELBE via the photoactivation method is found to be consistent with previous experimental data using photon scattering or neutron detection methods.Comment: 9 page

    Photon strength distributions in stable even-even molybdenum isotopes

    Full text link
    Electromagnetic dipole-strength distributions up to the particle separation energies are studied for the stable even-even nuclides 92,94,96,98,100^{92,94,96,98,100}Mo in photon scattering experiments at the superconducting electron accelerator ELBE of the Forschungszentrum Dresden-Rossendorf. The influence of inelastic transitions to low-lying excited states has been corrected by a simulation of γ\gamma cascades using a statistical model. After corrections for branching ratios of ground-state transitions, the photon-scattering cross-sections smoothly connect to data obtained from (γ,n)(\gamma,n)-reactions. With the newly determined electromagnetic dipole response of nuclei well below the particle separation energies the parametrisation of the isovector giant-dipole resonance is done with improved precision.Comment: Proceedings Nuclear Physics in Astrophysics 3, March 2007, Dresden Journal of Physics G, IOP Publishin

    Soil resources, microbial activity, and primary production across an agricultural ecosystem

    Get PDF
    Includes bibliographical references (pages 169-170).The degree to which soil resource availability is linked to patterns of microbial activity and plant productivity within ecosystems has important consequences for our understanding of how ecosystems are structured and for the management of systems for agricultural production. We studied this linkage in a 48-ha site in southwest Michigan, USA, that had been cultivated and planted to row crops for decades. Prior to seeding the site to genetically identical soybean plants (Glycine max) in early spring, we removed soil samples from ≈600 locations; plant biomass was harvested from these same locations later in the season. Soil samples were analyzed for physical properties (texture, bulk density), chemical properties (moisture, pH, total C, total N, inorganic N), and biological attributes (microbial biomass, microbial population size, respiration potential, and nitrification and N-mineralization potentials). Plant analyses included biomass and C and N contents. Soil resource variability across this long-cultivated site was remarkably high, as was variability in microbial activity and primary productivity. In almost all cases variability exhibited a strong spatially explicit structure: for most properties and processes > 50% of sample variance was spatially dependent at a scale of 5–60 m. Exceptions included microtopography, soil pH, and inorganic P, which were spatially dependent across the entire 1–1200 m range of separation distances examined in this study, and the culturable-bacteria population, which was not spatially autocorrelated at any scale examined. Both topographic relief and soil pH exhibited strongly nested structures, with autocorrelation occurring within two (topography) or more (pH) distinct ranges. Multiple regression analysis showed surprisingly little correlation between biological processes (soybean productivity, soil N turnover, soil respiration), and static soil properties. The best predictor of soybean biomass at late reproductive stages (r2 = 0.42) was a combination of nitrate N, bulk density, inorganic P, N-mineralization rates, and pH. Overall, results suggest a remarkable degree of spatial variability for a pedogenically homogeneous site that has been plowed and cropped mostly as a single field for > 100 yr. Such variability is likely to be generic to most ecosystems and should be carefully evaluated when making inferences about ecological relationships in these systems and when considering alternative sampling and management strategies

    Large magnetic anisotropy in Ferrihydrite nanoparticles synthesized from reverse micelles

    Full text link
    Six-line ferrihydrite(FH) nanoparticles have been synthesized in the core of reverse micelles, used as nanoreactors to obtain average particle sizes ≈\approx 2 to 4 nm. The blocking temperatures TBmT_B^m extracted from magnetization data increased from ≈10\approx 10 to 20 K for increasing particle size. Low-temperature \MOS measurements allowed to observe the onset of differentiated contributions from particle core and surface as the particle size increases. The magnetic properties measured in the liquid state of the original emulsion showed that the \FH phase is not present in the liquid precursor, but precipitates in the micelle cores after the free water is freeze-dried. Systematic susceptibility \chi_{ac}(\emph{f},T) measurements showed the dependence of the effective magnetic anisotropy energies EaE_{a} with particle volume, and yielded an effective anisotropy value of Keff=312±10K_{eff} = 312\pm10 kJ/m3^3.Comment: 8 pages, 10 figures. Nanotechnology, v17 (Nov. 2006) In pres

    High real-space resolution measurement of the local structure of Ga_1-xIn_xAs using x-ray diffraction

    Full text link
    High real-space resolution atomic pair distribution functions (PDF)s from the alloy series Ga_1-xIn_xAs have been obtained using high-energy x-ray diffraction. The first peak in the PDF is resolved as a doublet due to the presence of two nearest neighbor bond lengths, Ga-As and In-As, as previously observed using XAFS. The widths of nearest, and higher, neighbor pairs are analyzed by separating the strain broadening from the thermal motion. The strain broadening is five times larger for distant atomic neighbors as compared to nearest neighbors. The results are in agreement with model calculations.Comment: 4 pages, 5 figure

    Photodissociation of p-process nuclei studied by bremsstrahlung induced activation

    Full text link
    A research program has been started to study experimentally the near-threshold photodissociation of nuclides in the chain of cosmic heavy element production with bremsstrahlung from the ELBE accelerator. An important prerequisite for such studies is good knowledge of the bremsstrahlung distribution which was determined by measuring the photodissociation of the deuteron and by comparison with model calculations. First data were obtained for the astrophysically important target nucleus 92-Mo by observing the radioactive decay of the nuclides produced by bremsstrahlung irradiation at end-point energies between 11.8 MeV and 14.0 MeV. The results are compared to recent statistical model calculations.Comment: 6 pages, 8 figures, Proceedings Nuclear Physics in Astrophysics II, May 16-20, 2005, Debrecen, Hungary. The original publication is available at www.eurphysj.or

    Transition rates and nuclear structure changes in mirror nuclei 47Cr and 47V

    Full text link
    Lifetime measurements in the mirror nuclei 47Cr and 47V were performed by means of the Doppler-shift attenuation method using the multidetector array EUROBALL, in conjunction with the ancillary detectors ISIS and the Neutron Wall. The determined transition strengths in the yrast cascades are well described by full pf shell model calculations.Comment: Latex2e, 11 pages, 3 figure

    Scandal - A Facility For Elastic Neutron Scattering Studies in the 50-130 MeV Range

    Get PDF
    A facility for detection of scattered neutrons in the energy interval 50−130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), is part of the standard detection system at the 20-180 MeV neutron beam facility of the The Svedberg Laboratory, Uppsala. It has primarily been used for studies of elastic neutron scattering, but it has been employed for (n,p) and (n,d) reaction experiments as well. Results of recent experiments are presented to illustrate the performance of the spectrometer. Recently, the facility has been upgraded to perform also (n,Xn') experiments. For this purpose, a new converter, CLODIA, has been developed and installed. Preliminary results of the commissioning of CLODIA will be presented

    Experimental study of the electric dipole strength in the even Mo nuclei and its deformation dependence

    Full text link
    Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental determination of the photon strength function covering the high excitation energy range above 4 MeV with its increasing level density. Photon scattering was used up to the neutron separation energies Sn and data up to the maximum of the isovector giant resonance(GDR) were obtained by photo-activation. After a proper correction for multi-step processes the observed quasi-continuous spectra of scattered photons show a remarkably good match to the photon strengths derived from nuclear photo effect data obtained previously by neutron detection and corrected in absolute scale using the new activation results. The combined data form an excellent basis to derive a shape dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N = 50 neutron shell, i.e. with the impact of quadrupole deformation and triaxiality. The wide energy coverage of the data allows for a stringent assessment of the dipole sum-rule, and a test of a novel parameterization developed previously which is based upon. This parameterization for the electric dipole strength function in nuclei with A>80 deviates significantly from prescriptions generally used previously. In astrophysical network calculations it may help to quantify the role the p-process plays in the cosmic nucleosynthesis. It also has impact on the accurate analysis of neutron capture data of importance for future nuclear energy systems and waste transmutation.Comment: 41 pages; accepted for publication in PR
    • …
    corecore