2,574 research outputs found
Simulation Subsumption or DĂ©jĂ vu on the Web
Simulation unification is a special kind of unification adapted to retrieving semi-structured data on the Web. This article introduces simulation subsumption, or containment, that is, query subsumption under simulation unification. Simulation subsumption is crucial in general for query optimization, in particular for optimizing pattern-based search engines, and for the termination of recursive rule-based web languages such as the XML and RDF query language Xcerpt. This paper first motivates and formalizes simulation subsumption. Then, it establishes decidability of simulation subsumption for advanced query patterns featuring descendant constructs, regular expressions, negative subterms (or subterm exclusions), and multiple variable occurrences. Finally, we show that subsumption between two query terms can be decided in O(n!n) where n is the sum of the sizes of both query terms
A Rule-Based Approach to Analyzing Database Schema Objects with Datalog
Database schema elements such as tables, views, triggers and functions are
typically defined with many interrelationships. In order to support database
users in understanding a given schema, a rule-based approach for analyzing the
respective dependencies is proposed using Datalog expressions. We show that
many interesting properties of schema elements can be systematically determined
this way. The expressiveness of the proposed analysis is exemplarily shown with
the problem of computing induced functional dependencies for derived relations.
The propagation of functional dependencies plays an important role in data
integration and query optimization but represents an undecidable problem in
general. And yet, our rule-based analysis covers all relational operators as
well as linear recursive expressions in a systematic way showing the depth of
analysis possible by our proposal. The analysis of functional dependencies is
well-integrated in a uniform approach to analyzing dependencies between schema
elements in general.Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Modelling the atomic structure of very high-density amorphous ice
The structure of very high-density amorphous (VHDA) ice has been modelled by
positionally disordering three crystalline phases, namely ice IV, VI and XII.
These phases were chosen because only they are stable or metastable in the
region of the ice phase diagram where VHDA ice is formed, and their densities
are comparable to that of VHDA ice. An excellent fit to the medium range of the
experimentally observed pair-correlation function g(r) of VHDA ice was obtained
by introducing disorder into the positions of the H2O molecules, as well as
small amounts of molecular rotational disorder, disorder in the O--H bond
lengths and disorder in the H--O--H bond angles. The low-k behaviour of the
experimental structure factor, S(k), is also very well reproduced by this
disordered-crystal model. The fraction of each phase present in the best-fit
disordered model is very close to that observed in the probable crystallization
products of VHDA ice. In particular, only negligible amounts of ice IV are
predicted, in accordance with experimental observation.Comment: 4 pages, 3 figures, 1 table, v2: changes made in response to
referees' comments, the justification for using certain ice phases is
improved, and ice IV is now disordered as wel
Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis
Herein, we show that group 11 CO[subscript 2] reduction catalysts are rapidly poisoned by progressive deposition of trace metal ion impurities present in high purity electrolytes. Metal impurity deposition was characterized by XPS and in situ stripping voltammetry and is coincident with loss of catalytic activity and selectivity for CO[subscript 2] reduction, favoring hydrogen evolution on poisoned surfaces. Metal deposition can be suppressed by complexing trace metal ion impurities with ethylenediaminetetraacetic acid or solid-supported iminodiacetate resins. Metal ion complexation allows for reproducible, sustained catalytic activity and selectivity for CO[subscript 2] reduction on Au, Ag, and Cu electrodes. Together, this study establishes the principal mode by which group 11 CO[subscript 2] reduction catalysts are poisoned and lays out a general approach for extending the lifetime of electrocatalysts subject to impurity metal deposition.MIT Energy Initiative (Saudi Aramco, research agreement)United States. Air Force Office of Scientific Research (Award FA9550-15-1-0135)Massachusetts Institute of Technology. Department of Chemistry (Junior Faculty Funds)National Science Foundation (U.S.) (Predoctoral Fellowship)National Science Foundation (U.S.) (MIT MRSEC Program, award number DMR-0819762
Photoactivation experiment on 197Au and its implications for the dipole strength in heavy nuclei
The 197Au(gamma,n) reaction is used as an activation standard for
photodisintegration studies on astrophysically relevant nuclei. At the
bremsstrahlung facility of the superconducting electron accelerator ELBE
(Electron Linear accelerator of high Brilliance and low Emittance) of
Forschungszentrum Dresden-Rossendorf, photoactivation measurements on 197Au
have been performed with bremsstrahlung endpoint energies from 8.0 to 15.5 MeV.
The measured activation yield is compared with previous experiments as well as
with calculations using Hauser-Feshbach statistical models. It is shown that
the experimental data are best described by a two-Lorentzian parametrization
with taking the axial deformation of 197Au into account. The experimental
197Au(gamma,n) reaction yield measured at ELBE via the photoactivation method
is found to be consistent with previous experimental data using photon
scattering or neutron detection methods.Comment: 9 page
Studies of reversible capsid shell growth
Results from molecular dynamics simulations of simple, structured particles
capable of self-assembling into polyhedral shells are described. The analysis
focuses on the growth histories of individual shells in the presence of an
explicit solvent and the nature of the events along their growth pathways; the
results provide further evidence of the importance of reversibility in the
assembly process. The underlying goal of this approach is the modeling of virus
capsid growth, a phenomenon at the submicroscopic scale that, despite its
importance, is little understood.Comment: 11 pages, 8 figure
coupling determined beyond the chiral limit
Within the conventional QCD sum rules, we calculate the coupling
constant, , beyond the chiral limit using two-point correlation
function with a pion. We consider the Dirac structure, , at
order, which has clear dependence on the PS and PV coupling schemes
for the pion-nucleon interactions. For a consistent treatment of the sum rule,
we include the linear terms in quark mass as they constitute the same chiral
order as . Using the PS coupling scheme for the pion-nucleon
interaction, we obtain , which is very close to the
empirical coupling. This demonstrates that going beyond the chiral
limit is crucial in determining the coupling and the pseudoscalar coupling
scheme is preferable from the QCD point of view.Comment: 8 pages, revtex, some errors are corrected, substantially revise
Photodissociation of p-process nuclei studied by bremsstrahlung induced activation
A research program has been started to study experimentally the
near-threshold photodissociation of nuclides in the chain of cosmic heavy
element production with bremsstrahlung from the ELBE accelerator. An important
prerequisite for such studies is good knowledge of the bremsstrahlung
distribution which was determined by measuring the photodissociation of the
deuteron and by comparison with model calculations. First data were obtained
for the astrophysically important target nucleus 92-Mo by observing the
radioactive decay of the nuclides produced by bremsstrahlung irradiation at
end-point energies between 11.8 MeV and 14.0 MeV. The results are compared to
recent statistical model calculations.Comment: 6 pages, 8 figures, Proceedings Nuclear Physics in Astrophysics II,
May 16-20, 2005, Debrecen, Hungary. The original publication is available at
www.eurphysj.or
Light-ion production in the interaction of 96 MeV neutrons with oxygen
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha)
production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra
are measured at eight laboratory angles from 20 degrees to 160 degrees in steps
of 20 degrees. Procedures for data taking and data reduction are presented.
Deduced energy-differential and production cross sections are reported.
Experimental cross sections are compared to theoretical reaction model
calculations and experimental data at lower neutron energies in the literature.
The measured proton data agree reasonably well with the results of the model
calculations, whereas the agreement for the other particles is less convincing.
The measured production cross sections for protons, deuterons, tritons and
alpha particles support the trends suggested by data at lower energies.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Photon strength distributions in stable even-even molybdenum isotopes
Electromagnetic dipole-strength distributions up to the particle separation
energies are studied for the stable even-even nuclides Mo
in photon scattering experiments at the superconducting electron accelerator
ELBE of the Forschungszentrum Dresden-Rossendorf. The influence of inelastic
transitions to low-lying excited states has been corrected by a simulation of
cascades using a statistical model. After corrections for branching
ratios of ground-state transitions, the photon-scattering cross-sections
smoothly connect to data obtained from -reactions. With the newly
determined electromagnetic dipole response of nuclei well below the particle
separation energies the parametrisation of the isovector giant-dipole resonance
is done with improved precision.Comment: Proceedings Nuclear Physics in Astrophysics 3, March 2007, Dresden
Journal of Physics G, IOP Publishin
- …