465 research outputs found
Interim analysis of long time creep behavior of columbium C-103 alloy
Analysis of 16 long time creep tests on columbium C-103 alloy (Cb-10Hf-1Ti-0.7Zr) indicates that the calculated stresses to give 1 percent creep strain in 100,000 hours at 1,255 K (1800 F) are 7.93 and 8.96 MPa (1,150 and 1,300 psi) for fine grained and course grained materials, respectively. The apparent activation energy and stress dependence for creep of this alloy are approximately 315 KJ/gmol (75,300 cal/gmol) and 2.51, respectively, based on Dorn-Sherby types of relations. However, the 90 percent confidence limits on these values are wide because of the limited data currently available
Long-time creep behavior of the niobium alloy C-103
The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon = epsilon(0) + K e raised to power (st) - 1), where epsilon (0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate
Spectral extrema and Lifshitz tails for non monotonous alloy type models
In the present note, we determine the ground state energy and study the
existence of Lifshitz tails near this energy for some non monotonous alloy type
models. Here, non monotonous means that the single site potential coming into
the alloy random potential changes sign. In particular, the random operator is
not a monotonous function of the random variables
Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs
We study homogeneous, independent percolation on general quasi-transitive
graphs. We prove that in the disorder regime where all clusters are finite
almost surely, in fact the expectation of the cluster size is finite. This
extends a well-known theorem by Menshikov and Aizenman & Barsky to all
quasi-transitive graphs. Moreover we deduce that in this disorder regime the
cluster size distribution decays exponentially, extending a result of Aizenman
& Newman. Our results apply to both edge and site percolation, as well as long
range (edge) percolation. The proof is based on a modification of the Aizenman
& Barsky method.Comment: Latex 2e; 25 pages (a4wide); small editorial corrections; one
reference adde
Perturbation of a lattice spectral band by a nearby resonance
A soluble model of weakly coupled "molecular" and "nuclear" Hamiltonians is
studied in order to exhibit explicitly the mechanism leading to the enhancement
of fusion probability in case of a narrow near-threshold nuclear resonance. We,
further, consider molecular cells of this type being arranged in lattice
structures. It is shown that if the real part of the narrow nuclear resonance
lies within the molecular band generated by the intercellular interaction, an
enhancement, proportional to the inverse width of the nuclear resonance, is to
be expected.Comment: RevTeX, 2 figures within the file. In May 2000 the title changed and
some minor corrections have been don
Integrated Data Analysis of Six Clinical Studies Points Toward Model-Informed Precision Dosing of Tamoxifen
Introduction: At tamoxifen standard dosing, ∼20% of breast cancer patients do not reach proposed target endoxifen concentrations >5.97 ng/mL. Thus, better understanding the large interindividual variability in tamoxifen pharmacokinetics (PK) is crucial. By applying non-linear mixed-effects (NLME) modeling to a pooled ‘real-world’ clinical PK database, we aimed to (i) dissect several levels of variability and identify factors predictive for endoxifen exposure and (ii) assess different tamoxifen dosing strategies for their potential to increase the number of patients reaching target endoxifen concentrations.
Methods: Tamoxifen and endoxifen concentrations with genetic and demographic data of 468 breast cancer patients from six reported studies were used to develop a NLME parent-metabolite PK model. Different levels of variability on model parameters or measurements were investigated and the impact of covariates thereupon explored. The model was subsequently applied in a simulation-based comparison of three dosing strategies with increasing degree of dose individualization for a large virtual breast cancer population. Interindividual variability of endoxifen concentrations and the fraction of patients at risk for not reaching target concentrations were assessed for each dosing strategy.
Results and Conclusions: The integrated NLME model enabled to differentiate and quantify four levels of variability (interstudy, interindividual, interoccasion, and intraindividual). Strong influential factors, i.e., CYP2D6 activity score, drug–drug interactions with CYP3A and CYP2D6 inducers/inhibitors and age, were reliably identified, reducing interoccasion variability to <20% CV. Yet, unexplained interindividual variability in endoxifen formation remained large (47.2% CV). Hence, therapeutic drug monitoring seems promising for achieving endoxifen target concentrations. Three tamoxifen dosing strategies [standard dosing (20 mg QD), CYP2D6-guided dosing (20, 40, and 60 mg QD) and individual model-informed precision dosing (MIPD)] using three therapeutic drug monitoring samples (5–120 mg QD) were compared, leveraging the model. The proportion of patients at risk for not reaching target concentrations was 22.2% in standard dosing, 16.0% in CYP2D6-guided dosing and 7.19% in MIPD. While in CYP2D6-guided- and standard dosing interindividual variability in endoxifen concentrations was high (64.0% CV and 68.1% CV, respectively), it was considerably reduced in MIPD (24.0% CV). Hence, MIPD demonstrated to be the most promising strategy for achieving target endoxifen concentrations
New characterizations of the region of complete localization for random Schr\"odinger operators
We study the region of complete localization in a class of random operators
which includes random Schr\"odinger operators with Anderson-type potentials and
classical wave operators in random media, as well as the Anderson tight-binding
model. We establish new characterizations or criteria for this region of
complete localization, given either by the decay of eigenfunction correlations
or by the decay of Fermi projections. (These are necessary and sufficient
conditions for the random operator to exhibit complete localization in this
energy region.) Using the first type of characterization we prove that in the
region of complete localization the random operator has eigenvalues with finite
multiplicity
Localization Bounds for an Electron Gas
Mathematical analysis of the Anderson localization has been facilitated by
the use of suitable fractional moments of the Green function. Related methods
permit now a readily accessible derivation of a number of physical
manifestations of localization, in regimes of strong disorder, extreme
energies, or weak disorder away from the unperturbed spectrum. The present work
establishes on this basis exponential decay for the modulus of the two--point
function, at all temperatures as well as in the ground state, for a Fermi gas
within the one-particle approximation. Different implications, in particular
for the Integral Quantum Hall Effect, are reviewed.Comment: An extended version of the previous draft. LaTeX, 1 figure (eps
An Improved Combes-Thomas Estimate of Magnetic Schr\"{o}dinger Operators
In the present paper, we prove an improved Combes-Thomas estimate, i.e., the
Combes-Thomas estimate in trace-class norms, for magnetic Schr\"{o}dinger
operators under general assumptions. In particular, we allow unbounded
potentials. We also show that for any function in the Schwartz space on the
reals the operator kernel decays, in trace-class norms, faster than any
polynomial.Comment: 25 pages, some errors correcte
A Novel Positive-Contrast Magnetic Resonance Imaging Line Marker for High-Dose-Rate (HDR) MRI-Assisted Radiosurgery (MARS)
Magnetic resonance imaging (MRI) can facilitate accurate organ delineation and optimal dose distributions in high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS). Its use for this purpose has been limited by the lack of positive-contrast MRI markers that can clearly delineate the lumen of the HDR applicator and precisely show the path of the HDR source on T1- and T2-weighted MRI sequences. We investigated a novel MRI positive-contrast HDR brachytherapy or interventional radiotherapy line marker, C4:S, consisting of C4 (visible on T1-weighted images) complexed with saline. Longitudinal relaxation time (T1) and transverse relaxation time (T2) for C4:S were measured on a 1.5 T MRI scanner. High-density polyethylene (HDPE) tubing filled with C4:S as an HDR brachytherapy line marker was tested for visibility on T1- and T2-weighted MRI sequences in a tissue-equivalent female ultrasound training pelvis phantom. Relaxivity measurements indicated that C4:S solution had good T1-weighted contrast (relative to oil [fat] signal intensity) and good T2-weighted contrast (relative to water signal intensity) at both room temperature (relaxivity ratio \u3e 1; r2/r1 = 1.43) and body temperature (relaxivity ratio \u3e 1; r2/r1 = 1.38). These measurements were verified by the positive visualization of the C4:S (C4/saline 50:50) HDPE tube HDR brachytherapy line marker on both T1- and T2-weighted MRI sequences. Orientation did not affect the relaxivity of the C4:S contrast solution. C4:S encapsulated in HDPE tubing can be visualized as a positive line marker on both T1- and T2-weighted MRI sequences. MRI-guided HDR planning may be possible with these novel line markers for HDR MARS for several types of cancer
- …