544 research outputs found

    Chlorin Index: A new parameter for organic matter freshness in sediments

    Get PDF
    Total chlorins, comprising degradation products of chlorophyll, have been used recently to reconstruct paleoproductivity from marine sediment cores. Here, we report on a new index, the Chlorin Index (CI), that proves to be a helpful tool for rapidly estimating organic matter freshness in marine sediments. The CI is a ratio between the fluorescence intensity of a sediment extracted with acetone and treated with hydrochloric acid and the original sediment extract. It represents the ratio of chlorophyll and its degradation products deposited in the sediments that could still be chemically transformed and those that are inert to chemical attack. The ratio is lower in sediments that include freshly deposited phytoplankton material and higher in older, more degraded sediments. We measured this new parameter on surface sediments, and sediments from several short and a long sediment core from different oceanic settings. CI values range from 0.2 for chlorophyll a to 0.36–0.56 for fresh material deposited on the shelf off Namibia to values around 0.67 in sediments off Chile and Peru to values up to 0.97 for sediments in a deep core from the northeastern slope of the Arabian Sea. We have compared the CI to rates of bacterial sulfate reduction, as a direct measure of organic matter reactivity and to other degradation indices based on amino acid composition. We conclude that the CI is a reliable and simple tool for the characterization of organic material freshness in sediments in respect to its degradation state

    Disease progression of spinocerebellar ataxia types 1, 2, 3 and 6 before and after ataxia onset

    Get PDF
    OBJECTIVE: Our aim was to study the evolution of ataxia and neurological symptoms before and after ataxia onset in the most common spinocerebellar ataxias (SCAs), SCA1, SCA2, SCA3 and SCA6. We therefore jointly analysed the data of the EUROSCA and RISCA studies, which recruited ataxic and non-ataxic mutation carriers. METHODS: We used mixed effect models to analyse the evolution of Scale for the Rating and Assessment of Ataxia (SARA) scores, SCA Functional Index (SCAFI) and Inventory of Non-Ataxia Signs (INAS) counts. We applied multivariable modelling to identify factors associated with SARA progression. In the time interval 5 years prior to and after ataxia onset, we calculated sensitivity to change ratios (SCS) of SARA, SCAFI and INAS. RESULTS: 2740 visits of 677 participants were analysed. All measures showed non-linear progression that was best fitted by linear mixed models with linear, quadratic and cubic time effects. R(2) values indicating quality of the fit ranged from 0.70 to 0.97. CAG repeat was associated with faster progression in SCA1, SCA2 and SCA3, but not SCA6. 5 years prior to and after ataxia onset, SARA had the highest SCS of all measures with a mean of 1.21 (95% CI: 1.20, 1.21) in SCA1, 0.94 (0.93, 0.94) in SCA2 and 1.23 (1.22, 1.23) in SCA3. INTERPRETATION: Our data have important implications for the understanding of disease progression in SCA1, SCA2, SCA3 and SCA6 across the lifespan. Furthermore, our study provides information for the design of interventional trials, especially in pre-ataxic mutation carriers close to ataxia onset and patients in early disease stages

    Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice

    Get PDF
    BACKGROUND: Inflammation is suspected to contribute to the progression and severity of neurodegeneration in Alzheimer's disease (AD). Transgenic mice overexpressing the london mutant of amyloid precursor protein, APP [V717I], robustly recapitulate the amyloid pathology of AD. METHODS: Early and late, temporal and spatial characteristics of inflammation were studied in APP [V717I] mice at 3 and 16 month of age. Glial activation and expression of inflammatory markers were determined by immunohistochemistry and RT-PCR. Amyloid deposition was assessed by immunohistochemistry, thioflavine S staining and western blot experiments. BACE1 activity was detected in brain lysates and in situ using the BACE1 activity kit from R&D Systems, Wiesbaden, Germany. RESULTS: Foci of activated micro- and astroglia were already detected at age 3 months, before any amyloid deposition. Inflammation parameters comprised increased mRNA levels coding for interleukin-1β, interleukin-6, major histocompatibility complex II and macrophage-colony-stimulating-factor-receptor. Foci of CD11b-positive microglia expressed these cytokines and were neighbored by activated astrocytes. Remarkably, β-secretase (BACE1) mRNA, neuronal BACE1 protein at sites of focal inflammation and total BACE1 enzyme activity were increased in 3 month old APP transgenic mice, relative to age-matched non-transgenic mice. In aged APP transgenic mice, the mRNA of all inflammatory markers analysed was increased, accompanied by astroglial iNOS expression and NO-dependent peroxynitrite release, and with glial activation near almost all diffuse and senile Aβ deposits. CONCLUSION: The early and focal glial activation, in conjunction with upregulated BACE1 mRNA, protein and activity in the presence of its substrate APP, is proposed to represent the earliest sites of amyloid deposition, likely evolving into amyloid plaques

    NP4 12-MONTHS COSTS OF PARKINSON'S DISEASE IN GERMANY—RESULTS OF A PROSPECTIVE STUDY

    Get PDF

    Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Septic encephalopathy is a severe brain dysfunction caused by systemic inflammation in the absence of direct brain infection. Changes in cerebral blood flow, release of inflammatory molecules and metabolic alterations contribute to neuronal dysfunction and cell death.</p> <p>Methods</p> <p>To investigate the relation of electrophysiological, metabolic and morphological changes caused by SE, we simultaneously assessed systemic circulation, regional cerebral blood flow and cortical electroencephalography in rats exposed to bacterial lipopolysaccharide. Additionally, cerebral glucose uptake, astro- and microglial activation as well as changes of inflammatory gene transcription were examined by small animal PET using [18F]FDG, immunohistochemistry, and real time PCR.</p> <p>Results</p> <p>While the systemic hemodynamic did not change significantly, regional cerebral blood flow was decreased in the cortex paralleled by a decrease of alpha activity of the electroencephalography. Cerebral glucose uptake was reduced in all analyzed neocortical areas, but preserved in the caudate nucleus, the hippocampus and the thalamus. Sepsis enhanced the transcription of several pro- and anti-inflammatory cytokines and chemokines including tumor necrosis factor alpha, interleukin-1 beta, transforming growth factor beta, and monocot chemoattractant protein 1 in the cerebrum. Regional analysis of different brain regions revealed an increase in ED1-positive microglia in the cortex, while total and neuronal cell counts decreased in the cortex and the hippocampus.</p> <p>Conclusion</p> <p>Together, the present study highlights the complexity of sepsis induced early impairment of neuronal metabolism and activity. Since our model uses techniques that determine parameters relevant to the clinical setting, it might be a useful tool to develop brain specific therapeutic strategies for human septic encephalopathy.</p

    Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms.

    Get PDF
    OBJECTIVE: To identify factors that determine disease severity and clinical phenotype of the most common spinocerebellar ataxias (SCAs), we studied 526 patients with SCA1, SCA2, SCA3. or SCA6. METHODS: To measure the severity of ataxia we used the Scale for the Assessment and Rating of Ataxia (SARA). In addition, nonataxia symptoms were assessed with the Inventory of Non-Ataxia Symptoms (INAS). The INAS count denotes the number of nonataxia symptoms in each patient. RESULTS: An analysis of covariance with SARA score as dependent variable and repeat lengths of the expanded and normal allele, age at onset, and disease duration as independent variables led to multivariate models that explained 60.4% of the SARA score variance in SCA1, 45.4% in SCA2, 46.8% in SCA3, and 33.7% in SCA6. In SCA1, SCA2, and SCA3, SARA was mainly determined by repeat length of the expanded allele, age at onset, and disease duration. The only factors determining the SARA score in SCA6 were age at onset and disease duration. The INAS count was 5.0 +/- 2.3 in SCA1, 4.6 +/- 2.2 in SCA2, 5.2 +/- 2.5 in SCA3, and 2.0 +/- 1.7 in SCA6. In SCA1, SCA2, and SCA3, SARA score and disease duration were the strongest predictors of the INAS count. In SCA6, only age at onset and disease duration had an effect on the INAS count. CONCLUSIONS: Our study suggests that spinocerebellar ataxia (SCA) 1, SCA2, and SCA3 share a number of common biologic properties, whereas SCA6 is distinct in that its phenotype is more determined by age than by disease-related factors

    Health-related quality of life in patients with spinocerebellar ataxia: a validation study of the EQ-5D-3L

    Get PDF
    Although health-related quality of life (HRQoL) has developed into a crucial outcome parameter in clinical research, evidence of the EQ-5D-3L validation performance is lacking in patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. The objective of this study is to assess the acceptability, validity, reliability, and responsiveness of the EQ-5D-3L. For n = 842 predominantly European SCA patients of two longitudinal cohort studies, the EQ-5D-3L, PHQ-9 (Patient Health Questionnaire), and ataxia-specific clinical assessments (SARA: Scale for Assessment and Rating of Ataxia; ADL: activities of daily living as part of Friedreich's Ataxia Rating Scale; INAS: Inventory of Non-Ataxia Signs) were assessed at baseline and multiple annual follow-ups. The EQ-5D-3L was evaluated regarding acceptability, distribution properties, convergent and known-groups validity, test-retest reliability, and effect size measures to analyze health changes. The non-item response was low (EQ-5D-3L index: 0.8%; EQ-VAS: 3.4%). Ceiling effects occurred in 9.9% (EQ-5D-3L) and 3.0% (EQ-VAS) with a mean EQ-5D-3L index of 0.65 ± 0.21. In total, convergent validity showed moderate to strong Spearman's rho (r(s) > 0.3) coefficients comparing EQ-5D-3L and EQ-VAS with PHQ-9, SARA, ADL, and INAS. EQ-5D-3L could discriminate between groups of age, SARA, ADL, and INAS. Intra-class correlation coefficients (EQ-5D-3L(ICC): 0.95/EQ-VAS(ICC): 0.88) and Kappa statistics (range 0.44 to 0.93 for EQ-5D-3L items) indicated tolerable reliability. EQ-5D-3L shows small (effect size < 0.3) to moderate (effect size 0.3-0.59) health changes regarding ataxia severity. The analysis confirms an acceptable, reliable, valid, and responsive recommended EQ-5D-3L in SCA patients, measuring the HRQoL adequately, besides well-established clinical instruments

    Development of SARA(home), a new video-based tool for the assessment of ataxia at home

    Get PDF
    BACKGROUND: Clinical scales such as the Scale for the Assessment and Rating of Ataxia (SARA) cannot be used to study ataxia at home or to assess daily fluctuations. The objective of the current study was to develop a video-based instrument, SARA(home), for measuring ataxia severity easily and independently at home. METHODS: Based on feasibility of self-application, we selected 5 SARA items (gait, stance, speech, nose-finger test, fast alternating hand movements) for SARA(home) (range, 0-28). We compared SARA(home) items with total SARA scores in 526 patients with spinocerebellar ataxia types 1, 2, 3, and 6 from the EUROSCA natural history study. To prospectively validate the SARA(home), we directly compared the self-applied SARA(home) and the conventional SARA in 50 ataxia patients. To demonstrate feasibility of independent home recordings in a pilot study, 12 ataxia patients were instructed to obtain a video each morning and evening over a period of 14 days. All videos were rated offline by a trained rater. RESULTS: SARA(home) extracted from the EUROSCA baseline data was highly correlated with conventional SARA (r = 0.9854, P < 0.0001). In the prospective validation study, the SARA(home) was highly correlated with the conventional SARA (r = 0.9254, P < 0.0001). Five of 12 participants of the pilot study obtained a complete set of 28 evaluable videos. Seven participants obtained 13-27 videos. The intraindividual differences between the lowest and highest SARA(home) scores ranged from 1 to 5.5. CONCLUSION: The SARA(home) and the conventional SARA are highly correlated. Application at home is feasible. There was a considerable degree of intraindividual variability of the SARA(home) scores

    Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6.

    Get PDF
    Abstract: Onset of genetically determined neurodegenerative diseases is difficult to specify because of their insidious and slowly progressive nature. This is especially true for spinocerebellar ataxia (SCA) because of varying affection of many parts of the nervous system and huge variability of symptoms. We investigated early symptoms in 287 patients with SCA1, SCA2, SCA3, or SCA6 and calculated the influence of CAG repeat length on age of onset depending on (1) the definition of disease onset, (2) people defining onset, and (3) duration of symptoms. Gait difficulty was the initial symptom in two-thirds of patients. Double vision, dysarthria, impaired hand writing, and episodic vertigo preceded ataxia in 4% of patients, respectively. Frequency of other early symptoms did not differ from controls and was regarded unspecific. Data about disease onset varied between patients and relatives for 1 year or more in 44% of cases. Influence of repeat length on age of onset was maximum when onset was defined as beginning of permanent gait disturbance and cases with symptoms for more than 10 years were excluded. Under these conditions, CAG repeat length determined 64% of onset variability in SCA1, 67% in SCA2, 46% in SCA3, and 41% in SCA6 demonstrating substantial influence of nonrepeat factors on disease onset in all SCA subtypes. Identification of these factors is of interest as potential targets for disease modifying compounds. In this respect, recognition of early symptoms that develop before onset of ataxia is mandatory to determine the shift from presymptomatic to affected status in SCA
    corecore