960 research outputs found

    Об одном алгоритме преобразования компонент связности

    Get PDF
    This work deals with the chemo-mechanical sub-aperture polishing of glass lenses using spiral tool path and pressure-inflated membrane tools. Current trends in manufacturing precision optics in Europe go to smaller lot sizes and an increasing ratio of custom specific lens design. This requires deterministic processes as well as methods for an analytical process set-up without empirical try-outs. Chemo-mechanical polishing is typically applied for pre-polishing step, which aims for smoothing the surface with moderate shape correction. But due to kinematic effects the spiral-polishing process often shows changes in the radius of curvature, which are right now corrected by empirical try-outs and iterative corrections. This paper suggests an analytical tool for the compensation of these effects and contributes doing so to an efficient pre-polishing of aspheres. A mathematical model calculates the local distribution of material removal. It is based on Preston's equation and takes into account the influence of the major input parameters, such as feed rate, spindle revolutions and spot size. The given results show a significant reduction in shape deviation applying this methods compared to a polishing process without any compensation

    Assessment of different metrics for physical climate feedbacks

    No full text
    We quantify the feedbacks from the physical climate system on the radiative forcing for idealized climate simulations using four different methods. The results differ between the methods and differences are largest for the cloud feedback. The spatial and temporal variability of each feedback is used to estimate the averaging scale necessary to satisfy the feedback concept of one constant global mean value. We find that the year-to-year variability, combined with the methodological differences, in estimates of the feedback strength from a single model is comparable to the model-to-model spread in feedback strength of the CMIP3 ensemble. The strongest spatial and temporal variability is in the short-wave component of the cloud feedback. In our simulations, where many sources of natural variability are neglected, long-term averages are necessary to get reliable feedback estimates. Considering the large natural variability and relatively small forcing present in the real world, as compared to the forcing imposed by doubling CO2 concentrations in the simulations, implies that using observations to constrain feedbacks is a challenging task and requires reliable long-term measurements

    Size-resolved evaluation of simulated deep tropical convection

    Get PDF
    Deep moist convection is an inherently multiscale phenomenon with organization processes coupling convective elements to larger-scale structures. A realistic representation of the tropical dynamics demands a simulation framework that is capable of representing physical processes across a wide range of scales. Therefore, storm-resolving numerical simulations at 2.4 km have been performed covering the tropical Atlantic and neighboring parts for 2 months. The simulated cloud fields are combined with infrared geostationary satellite observations, and their realism is assessed with the help of object-based evaluation methods. It is shown that the simulations are able to develop a well-defined intertropical convergence zone. However, marine convective activity measured by the cold cloud coverage is considerably underestimated, especially for the winter season and the western Atlantic. The spatial coupling across the resolved scales leads to simulated cloud number size distributions that follow power laws similar to the observations, with slopes steeper in winter than summer and slopes steeper over ocean than over land. The simulated slopes are, however, too steep, indicating too many small and too few large tropical cloud cells. It is also discussed that the number of larger cells is less influenced by multiday variability of environmental conditions. Despite the identified deficits, the analyzed simulations highlight the great potential of this modeling framework for process-based studies of tropical deep convection. © 2018 American Meteorological Society

    Prophylactic inhibition of soluble epoxide hydrolase delays onset of nephritis and ameliorates kidney damage in NZB/W F1 mice

    Get PDF
    Epoxy-fatty-acids (EpFAs), cytochrome P450 dependent arachidonic acid derivatives, have been suggested to have anti-inflammatory properties, though their effects on autoimmune diseases like systemic lupus erythematosus (SLE) have yet to be investigated. We assessed the influence of EpFAs and their metabolites in lupus prone NZB/W F1 mice by pharmacological inhibition of soluble epoxide hydrolase (sEH, EPHX2). The sEH inhibitor 1770 was administered to lupus prone NZB/W F1 mice in a prophylactic and a therapeutic setting. Prophylactic inhibition of sEH significantly improved survival and reduced proteinuria. By contrast, sEH inhibitor-treated nephritic mice had no survival benefit; however, histological changes were reduced when compared to controls. In humans, urinary EpFA levels were significantly different in 47 SLE patients when compared to 10 healthy controls. Gene expression of EPHX2 was significantly reduced in the kidneys of both NZB/W F1 mice and lupus nephritis (LN) patients. Correlation of EpFAs with SLE disease activity and reduced renal EPHX gene expression in LN suggest roles for these components in human disease

    An automated cirrus classification

    Get PDF
    Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using re-analysis and satellite data, cirrus clouds are separated in four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back- trajectory based analysis, it is shown that these observation-based regimes can provide extra information on the cloud scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mecha- nisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processe

    Sub-mesoscale observations of convective cold pools with a dense station network in Hamburg, Germany

    Get PDF
    From June to August 2020, an observational network of 103 meteorological ground-based stations covered the greater area (50 km × 35 km) of Hamburg (Germany) as part of the Field Experiment on Sub-mesoscale Spatio-Temporal variability at Hanseatic city of Hamburg (FESST@HH). The purpose of the experiment was to shed light on the sub-mesoscale (O(100) m–O(10) km) structure of convective cold pools that typically remain under-resolved in operational networks. During the experiment, 82 custom-built, low-cost APOLLO (Autonomous cold POoL LOgger) stations sampled air temperature and pressure with fast-response sensors at 1 s resolution to adequately capture the strong and rapid perturbations associated with propagating cold pool fronts. A secondary network of 21 weather stations with commercial sensors provided additional information on relative humidity, wind speed, and precipitation at 10 s resolution. The realization of the experiment during the COVID-19 pandemic was facilitated by a large number of volunteers who provided measurement sites on their premises and supported station maintenance. This article introduces the novel type of autonomously operating instruments, their measurement characteristics, and the FESST@HH data set (https://doi.org/10.25592/UHHFDM.10172; Kirsch et al., 2021b). A case study demonstrates that the network is capable of mapping the horizontal structure of the temperature signal inside a cold pool, and quantifying a cold pool's size and propagation velocity throughout its life cycle. Beyond its primary purpose, the data set offers new insights into the spatial and temporal characteristics of the nocturnal urban heat island and variations of turbulent temperature fluctuations associated with different urban and natural environments

    142: Low dose thalidomide maintenance in myeloma patients after autologous stem cell transplantation

    Get PDF

    Atmospheric energy spectra in global kilometre-scale models

    Get PDF
    Eleven 40-day long integrations of five different global models with horizontal resolutions of less than 9 km are compared in terms of their global energy spectra. The method of normal-mode function decomposition is used to distinguish between balanced (Rossby wave; RW) and unbalanced (inertia-gravity wave; IGW) circulation. The simulations produce the expected canonical shape of the spectra, but their spectral slopes at mesoscales, and the zonal scale at which RW and IGW spectra intersect differ significantly. The partitioning of total wave energies into RWs an IGWs is most sensitive to the turbulence closure scheme and this partitioning is what determines the spectral crossing scale in the simulations, which differs by a factor of up to two. It implies that care must be taken when using simple spatial filtering to compare gravity wave phenomena in storm-resolving simulations, even when the model horizontal resolutions are similar. In contrast to the energy partitioning between the RWs and IGWs, changes in turbulence closure schemes do not seem to strongly affect spectral slopes, which only exhibit major differences at mesoscales. Despite their minor contribution to the global (horizontal kinetic plus potential available) energy, small scales are important for driving the global mean circulation. Our results support the conclusions of previous studies that the strength of convection is a relevant factor for explaining discrepancies in the energies at small scales. The models studied here produce the major large-scale features of tropical precipitation patterns. However, particularly at large horizontal wavenumbers, the spectra of upper tropospheric vertical velocity, which is a good indicator for the strength of deep convection, differ by factors of three or more in energy. High vertical kinetic energies at small scales are mostly found in those models that do not use any convective parameterisation

    Longitudinal study of the effects of teat condition on the risk of new intramammary infections in dairy cows

    Get PDF
    Machine milking–induced alterations of teat tissue may impair local defense mechanisms and increase the risk of new intramammary infections. The objective of the current study was to assess the influence of short-term and long-term alterations of teat tissue and infectious status of the udder quarter on the risk of naturally occurring new intramammary infections, inflammatory responses, and mastitis. Short-term and long-term changes in teat condition of right udder quarters of 135 cows of a commercial dairy farm in Saxony-Anhalt, Germany, were recorded monthly for 10 mo using simple classification schemes. Quarter milk samples were collected from all examined quarters at each farm visit. Bacteriological culture results and somatic cell counts of quarter milk samples were used to determine new inflammatory responses (increase from ≤100,000 cells/mL to >100,000 cells/mL between 2 samples), new infections (detection of a pathogen from a quarter that was free of the same pathogen at the preceding sampling), and new mastitis (combination of new inflammatory response and new infection). Separate Poisson mixed models for new inflammatory responses, new infections, and new mastitis caused by specific pathogens or groups of pathogens (contagious, environmental, major, minor, or any) were used to estimate risk ratios and 95% confidence intervals. Data preparation and parameter estimation were performed using the open source statistical analysis software R. We observed no effect of any variable describing teat condition on the risk of new intramammary infections, inflammatory responses, or mastitis. Intramammary infections of the same udder quarter in the preceding month did not affect risk either
    corecore