8 research outputs found

    Abrogation of TGF-β1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a devastating disease with no known effective pharmacological therapy. The fibroblastic foci of IPF contain activated myofibroblasts that are the major synthesizers of type I collagen. Transforming growth factor (TGF)-β1 promotes differentiation of fibroblasts into myofibroblasts in vitro and in vivo. In the current study, we investigated the molecular link between TGF-β1-mediated myofibroblast differentiation and histone deacetylase (HDAC) activity. Treatment of normal human lung fibroblasts (NHLFs) with the pan-HDAC inhibitor trichostatin A (TSA) inhibited TGF-β1-mediated α-smooth muscle actin (α-SMA) and α1 type I collagen mRNA induction. TSA also blocked the TGF-β1-driven contractile response in NHLFs. The inhibition of α-SMA expression by TSA was associated with reduced phosphorylation of Akt, and a pharmacological inhibitor of Akt blocked TGF-β1-mediated α-SMA induction in a dose-dependent manner. HDAC4 knockdown was effective in inhibiting TGF-β1-stimulated α-SMA expression as well as the phosphorylation of Akt. Moreover, the inhibitors of protein phosphatase 2A and 1 (PP2A and PP1) rescued the TGF-β1-mediated α-SMA induction from the inhibitory effect of TSA. Together, these data demonstrate that the differentiation of NHLFs to myofibroblasts is HDAC4 dependent and requires phosphorylation of Akt

    The Epstein-Barr Virus Latent Membrane Protein 1 and Transforming Growth Factor–β1 Synergistically Induce Epithelial–Mesenchymal Transition in Lung Epithelial Cells

    No full text
    The histopathology of idiopathic pulmonary fibrosis (IPF) includes the presence of myofibroblasts within so-called fibroblastic foci, and studies suggest that lung myofibroblasts may be derived from epithelial cells through epithelial–mesenchymal transition (EMT). Transforming growth factor (TGF)–β1 is expressed and/or activated in fibrogenesis, and induces EMT in lung epithelial cells in a dose-dependent manner. A higher occurrence of Epstein-Barr virus (EBV) has been reported in the lung tissue of patients with IPF. EBV expresses latent membrane protein (LMP) 1 during the latent phase of infection, and may play a role in the pathogenesis of pulmonary fibrosis inasmuch as LMP-1 may act as a constitutively active TNF-α receptor. Our data show a remarkable increase in mesenchymal cell markers, along with a concurrent reduction in the expression of epithelial cell markers in lung epithelial cells cotreated with LMP-1, and very low doses of TGF-β1. This effect was mirrored in lung epithelial cells infected with EBV expressing LMP1 and cotreated with TGF-β1. LMP1 pro-EMT signaling was identified, and occurs primarily through the nuclear factor–κB pathway and secondarily through the extracellular signal–regulated kinase (ERK) pathway. Activation of the ERK pathway was shown to be critical for aspects of TGF-β1–induced EMT. LMP1 accentuates the TGF-β1 activation of ERK. Together, these data demonstrate that the presence of EBV-LMP1 in lung epithelial cells synergizes with TGF-β1 to induce EMT. Our in vitro data may help to explain the observation that patients with IPF demonstrating positive staining for LMP1 in lung epithelial cells have a more rapid demise than patients in whom LMP1 is not detected

    Requirement of HDAC6 for Transforming Growth Factor-β1-induced Epithelial-Mesenchymal Transition*

    No full text
    The aberrant expression of transforming growth factor (TGF)-β1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-β1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including α-tubulin, and regulates cell motility. We showed that TGF-β1-induced EMT is accompanied by HDAC6-dependent deacetylation of α-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-β1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-β1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of α-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-β-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis

    Safety and efficacy of vanzacaftor–tezacaftor–deutivacaftor in adults with cystic fibrosis: randomised, double-blind, controlled, phase 2 trials

    No full text

    Long-term safety and efficacy of tezacaftor–ivacaftor in individuals with cystic fibrosis aged 12 years or older who are homozygous or heterozygous for Phe508del CFTR (EXTEND): an open-label extension study

    No full text
    Background: Tezacaftor-ivacaftor is an approved cystic fibrosis transmembrane conductance regulator (CFTR) modulator shown to be efficacious and generally safe and well tolerated over 8-24 weeks in phase 3 clinical studies in participants aged 12 years or older with cystic fibrosis homozygous for the Phe508del CFTR mutation (F/F; study 661-106 [EVOLVE]) or heterozygous for the Phe508del CFTR mutation and a residual function mutation (F/RF; study 661-108 [EXPAND]). Longer-term (>24 weeks) safety and efficacy of tezacaftor-ivacaftor has not been assessed in clinical studies. Here, we present results of study 661-110 (EXTEND), a 96-week open-label extension study that assessed long-term safety, tolerability, and efficacy of tezacaftor-ivacaftor in participants aged 12 years or older with cystic fibrosis who were homozygous or heterozygous for the Phe508del CFTR mutation. Methods: Study 661-110 was a 96-week, phase 3, multicentre, open-label study at 170 clinical research sites in Australia, Europe, Israel, and North America. Participants were aged 12 years or older, had cystic fibrosis, were homozygous or heterozygous for Phe508del CFTR, and completed one of six parent studies of tezacaftor-ivacaftor: studies 661-103, 661-106, 661-107, 661-108, 661-109, and 661-111. Participants received oral tezacaftor 100 mg once daily and oral ivacaftor 150 mg once every 12 h for up to 96 weeks. The primary endpoint was safety and 'tolerability. Secondary endpoints were changes in lung function, nutritional parameters, and respiratory symptom scores; pulmonary exacerbations; and pharmacokinetic parameters. A post-hoc analysis assessed the rate of lung function decline in F/F participants who received up to 120 weeks of tezacaftor-ivacaftor in studies 661-106 (F/F) and/or 661-110 compared with a matched cohort of CFTR modulator-untreated historical F/F controls from the Cystic Fibrosis Foundation Patient Registry. Primary safety analyses were done in all participants from all six parent studies who received at least one dose of study drug during this study. This study was registered at ClinicalTrials.gov (NCT02565914). Findings: Between Aug 31, 2015, to May 31, 2019, 1044 participants were enrolled in study 661-110 from the six parent studies of whom 1042 participants received at least one dose of study drug and were included in the safety set. 995 (95%) participants had at least one TEAE; 22 (2%) had TEAEs leading to discontinuation; and 351 (34%) had serious TEAEs. No deaths occurred during the treatment-emergent period; after the treatment-emergent period, two deaths occurred, which were both deemed unrelated to study drug. F/F (106/110; n=459) and F/RF (108/110; n=226) participants beginning tezacaftor-ivacaftor in study 661-110 had improvements in efficacy endpoints consistent with parent studies; improvements in lung function and nutritional parameters and reductions in pulmonary exacerbations observed in the tezacaftor-ivacaftor groups in the parent studies were generally maintained in study 661-110 for an additional 96 weeks. Pharmacokinetic parameters were also similar to those in the parent studies. The annualised rate of lung function decline was 61·5% (95% CI 35·8 to 86·1) lower in tezacaftor-ivacaftor-treated F/F participants versus untreated matched historical controls. Interpretation: Tezacaftor-ivacaftor was generally safe, well tolerated, and efficacious for up to 120 weeks, and the safety profile of tezacaftor-ivacaftor in study 661-110 was consistent with cystic fibrosis manifestations and with the safety profiles of the parent studies. The rate of lung function decline was significantly reduced in F/F participants, consistent with cystic fibrosis disease modification. Our results support the clinical benefit of long-term tezacaftor-ivacaftor treatment for people aged 12 years or older with cystic fibrosis with F/F or F/RF genotypes. Funding: Vertex Pharmaceuticals Incorporated

    Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials.

    No full text
    corecore