278 research outputs found

    N′-(4-Methoxy­benzo­yl)pyridine-2-carbohydrazide

    Get PDF
    The crystal structure of the title compound, C14H13N3O3, exhibits two inter­molecular N—H⋯O hydrogen bonds

    Assessing Response to Therapy for Nontuberculous Mycobacterial Lung Disease: Quo Vadis?

    Get PDF
    Assessing progression of disease or response to treatment remains a major challenge in the clinical management of nontuberculous mycobacterial (NTM) infections of the lungs. Serial assessments of validated measures of treatment response address whether the current therapeutic approach is on track toward clinical cure, which remains a fundamental question for clinicians and patients during the course of NTM disease treatment. The 2015 NTM Research Consortium Workshop, which included a patient advisory panel, identified treatment response biomarkers as a priority area for investigation. Limited progress in addressing this challenge also hampers drug development efforts. The Biomarker Qualification Program at the FDA supports the use of a validated treatment response biomarker across multiple drug development programs. Current approaches in clinical practice include microbiologic and radiographic monitoring, along with symptomatic and quality-of-life assessments. Blood-based monitoring, including assessments of humoral and cell-mediated NTM-driven immune responses, remain under investigation. Alignment of data collection schemes in prospective multicenter studies, including the support of biosample repositories, will support identification of treatment response biomarkers under standard-of-care and investigational therapeutic strategies. In this review, we outline the role of treatment monitoring biomarkers in both clinical practice and drug development frameworks

    Age-Related Adaptation of Bone-PDL-Tooth Complex: Rattus-Norvegicus as a Model System

    Get PDF
    Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7±0.1 to 0.9±0.2 GPa) and cementum (0.6±0.1 to 0.8±0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated

    Safety and efficacy of vanzacaftor–tezacaftor–deutivacaftor in adults with cystic fibrosis: randomised, double-blind, controlled, phase 2 trials

    Get PDF
    Background Elexacaftor–tezacaftor–ivacaftor has been shown to be safe and efficacious in people with cystic fibrosis and at least one F508del allele. Our aim was to identify a novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination capable of further increasing CFTR-mediated chloride transport, with the potential for once-daily dosing. Methods We conducted two phase 2 clinical trials to assess the safety and efficacy of a once-daily combination of vanzacaftor–tezacaftor–deutivacaftor in participants with cystic fibrosis who were aged 18 years or older. A phase 2 randomised, double-blind, active-controlled study (VX18-561-101; April 17, 2019, to Aug 20, 2020) was carried out to compare deutivacaftor monotherapy with ivacaftor monotherapy in participants with CFTR gating mutations, following a 4-week ivacaftor monotherapy run-in period. Participants were randomly assigned to receive either ivacaftor 150 mg every 12 h, deutivacaftor 25 mg once daily, deutivacaftor 50 mg once daily, deutivacaftor 150 mg once daily, or deutivacaftor 250 mg once daily in a 1:1:2:2:2 ratio. The primary endpoint was absolute change in ppFEV1 from baseline at week 12. A phase 2 randomised, double-blind, controlled, proof-of-concept study of vanzacaftor–tezacaftor–deutivacaftor (VX18-121-101; April 30, 2019, to Dec 10, 2019) was conducted in participants with cystic fibrosis and heterozygous for F508del and a minimal function mutation (F/MF genotypes) or homozygous for F508del (F/F genotype). Participants with F/MF genotypes were randomly assigned 1:2:2:1 to receive either 5 mg, 10 mg, or 20 mg of vanzacaftor in combination with tezacaftor–deutivacaftor or a triple placebo for 4 weeks, and participants with the F/F genotype were randomly assigned 2:1 to receive either vanzacaftor (20 mg)–tezacaftor–deutivacaftor or tezacaftor–ivacaftor active control for 4 weeks, following a 4-week tezacaftor–ivacaftor run-in period. Primary endpoints for part 1 and part 2 were safety and tolerability and absolute change in ppFEV1 from baseline to day 29. Secondary efficacy endpoints were absolute change from baseline at day 29 in sweat chloride concentrations and Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score. These clinical trials are registered with ClinicalTrials.gov, NCT03911713 and NCT03912233, and are complete. Findings In study VX18-561-101, participants treated with deutivacaftor 150 mg once daily (n=23) or deutivacaftor 250 mg once daily (n=24) had mean absolute changes in ppFEV1 of 3·1 percentage points (95% CI –0·8 to 7·0) and 2·7 percentage points (–1·0 to 6·5) from baseline at week 12, respectively, versus –0·8 percentage points (–6·2 to 4·7) with ivacaftor 150 mg every 12 h (n=11); the deutivacaftor safety profile was consistent with the established safety profile of ivacaftor 150 mg every 12 h. In study VX18-121-101, participants with F/MF genotypes treated with vanzacaftor (5 mg)–tezacaftor–deutivacaftor (n=9), vanzacaftor (10 mg)–tezacaftor–deutivacaftor (n=19), vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=20), and placebo (n=10) had mean changes relative to baseline at day 29 in ppFEV1 of 4·6 percentage points (−1·3 to 10·6), 14·2 percentage points (10·0 to 18·4), 9·8 percentage points (5·7 to 13·8), and 1·9 percentage points (−4·1 to 8·0), respectively, in sweat chloride concentration of −42·8 mmol/L (–51·7 to –34·0), −45·8 mmol/L (95% CI –51·9 to –39·7), −49·5 mmol/L (–55·9 to –43·1), and 2·3 mmol/L (−7·0 to 11·6), respectively, and in CFQ-R respiratory domain score of 17·6 points (3·5 to 31·6), 21·2 points (11·9 to 30·6), 29·8 points (21·0 to 38·7), and 3·3 points (−10·1 to 16·6), respectively. Participants with the F/F genotype treated with vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=18) and tezacaftor–ivacaftor (n=10) had mean changes relative to baseline (taking tezacaftor–ivacaftor) at day 29 in ppFEV1 of 15·9 percentage points (11·3 to 20·6) and −0·1 percentage points (−6·4 to 6·1), respectively, in sweat chloride concentration of −45·5 mmol/L (−49·7 to −41·3) and −2·6 mmol/L (−8·2 to 3·1), respectively, and in CFQ-R respiratory domain score of 19·4 points (95% CI 10·5 to 28·3) and −5·0 points (−16·9 to 7·0), respectively. The most common adverse events overall were cough, increased sputum, and headache. One participant in the vanzacaftor–tezacaftor–deutivacaftor group had a serious adverse event of infective pulmonary exacerbation and another participant had a serious rash event that led to treatment discontinuation. For most participants, adverse events were mild or moderate in severity. Interpretation Once-daily dosing with vanzacaftor–tezacaftor–deutivacaftor was safe and well tolerated and improved lung function, respiratory symptoms, and CFTR function. These results support the continued investigation of vanzacaftor–tezacaftor–deutivacaftor in phase 3 clinical trials compared with elexacaftor–tezacaftor–ivacaftor. Funding Vertex Pharmaceuticals
    • …
    corecore