228 research outputs found

    Hydrogen oxidation artifact during platinum oxide reduction in cyclic voltammetry analysis of low-loaded PEMFC electrodes

    Get PDF
    An artifact appearing during the cathodic transient of cyclic voltammograms (CVs) of low-loaded platinum on carbon (Pt/C) electrodes in proton exchange membrane fuel cells (PEMFCs) was examined. The artifact appears as an oxidation peak overlapping the reduction peak associated to the reduction of platinum oxide (PtOx). By varying the nitrogen (N2) purge in the working electrode (WE), gas pressures in working and counter electrode, upper potential limits and scan rates of the CVs, the artifact magnitude and potential window could be manipulated. From the results, the artifact is assigned to crossover hydrogen (H2X) accumulating in the WE, once the electrode is passivated towards hydrogen oxidation reaction (HOR) due to PtOx coverage. During the cathodic CV transient, PtOx is reduced and HOR spontaneously occurs with the accumulated H2X, resulting in the overlap of the PtOx reduction with the oxidation peak. This feature is expected to occur predominantly in CV analysis of low-loaded electrodes made of catalyst material, whose oxide is inactive towards HOR. Further, it is only measurable while the N2 purge of the WE is switched off during the CV measurement. For higher loaded electrodes, the artifact is not observed as the electrocatalysts are not fully inactivated towards HOR due to incomplete oxide coverage, and/or the currents associated with the oxide reduction are much larger than the spontaneous HOR of accumulated H2X. However, owing to the forecasted reduction in noble metal loadings of catalyst in PEMFCs, this artifact is expected to be observed more often in the future.Bundesministerium für Wirtschaft und TechnologieProjekt DEA

    Two patients with a complete proximal rupture of the hamstring

    Get PDF
    Two men visited our Emergency Room because of a water-ski-accident. At physical examination, there was hematoma at the upper leg with loss of strength at extension of the hip and flexion of the knee. Both patients had a palpable gap just distal of the ischial tuberosity. Further imaging by sonography and MR-scan showed a rupture of the proximal hamstring tendon. Treatment was operative refixation of the hamstring tendons at the ischial tuberosity. Aftertreatment consisted of brace for 4 weeks after operation. Both patients returned to their pre-operatively sports, though at a lower level. Surgical treatment of a complete proximal rupture of the hamstrings is recommended in case of sportive patients

    Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration.

    Full text link
    Cell migration is essential throughout embryonic and adult life. In numerous cell systems, the small GTPase Rac is required for lamellipodia formation at the leading edge and movement ability. However, the molecular mechanisms leading to Rac activation during migration are still unclear. Recently, a mammalian superfamily of proteins related to the prototype member Dock180 has been identified with homologues in Drosophila and Caenorhabditis elegans. Here, we addressed the role of Dock180 and ELMO1 proteins, which function as a complex to mediate Rac activation, in mammalian cell migration. Using mutants of Dock180 and ELMO1 in a Transwell assay as well as transgenic rescue of a C. elegans mutant lacking CED-5 (Dock180 homologue), we identified specific regions of Dock180 and ELMO1 required for migration in vitro and in a whole animal model. In both systems, the Dock180.ELMO1 complex formation and the ability to activate Rac were required. We also found that ELMO1 regulated multiple Dock180 superfamily members to promote migration. Interestingly, deletion mutants of ELMO1 missing their first 531 or first 330 amino acids that can still bind and cooperate with Dock180 in Rac activation failed to promote migration, which correlated with the inability to localize to lamellipodia. This finding suggests that Rac activation by the ELMO.Dock180 complex at discrete intracellular locations mediated by the N-terminal 330 amino acids of ELMO1 rather than generalized Rac activation plays a role in cell migration

    The prevalence of pelvic organ prolapse symptoms and signs and their relation with bladder and bowel disorders in a general female population

    Get PDF
    Contains fulltext : 81191.pdf (publisher's version ) (Closed access)INTRODUCTION AND HYPOTHESIS: In selected populations, pelvic organ prolapse (POP) was associated with bladder/bowel symptoms, but data on the general female population are lacking. Our aim was to obtain normative data on the prevalence of POP and pelvic floor dysfunction (PFD) symptoms and signs and to identify associations. METHODS: Validated questionnaires on POP and PFD (urogenital distress inventory, (UDI) and defaecation distress inventory (DDI)) were sent to a general population of 2,979 women (aged 45-85 years). Data were analysed using the Kruskal-Wallis test, chi square test and Spearman's rank correlation coefficient. RESULTS: Response rate was 62.7%. Associations between POP stage and parity (0.002) and vaginal bulging (<0.001) are significant. Anatomical locations of POP and PFD symptoms correlated significantly with incontinence of flatus, feeling anal prolapse, manual evacuation of stool, vaginal bulging, constipation and pain during faecal urge (p < or = 0.005). CONCLUSIONS: Strategies should be developed to alleviate obstructive bowel disorders associated with POP

    Thermostable DNA Polymerase from a Viral Metagenome Is a Potent RT-PCR Enzyme

    Get PDF
    Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable DNA polymerase (Pol) activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse transcriptase (RT) activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription PCR (RT-PCR). Wild-type 3173 Pol contains a proofreading 3′-5′ exonuclease domain that confers high fidelity in PCR. An easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-enzyme (Tth) and two-enzyme (MMLV RT/Taq) RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research and molecular diagnostics
    • …
    corecore