1,653 research outputs found

    Continuous image distortion by astrophysical thick lenses

    Full text link
    Image distortion due to weak gravitational lensing is examined using a non-perturbative method of integrating the geodesic deviation and optical scalar equations along the null geodesics connecting the observer to a distant source. The method we develop continuously changes the shape of the pencil of rays from the source to the observer with no reference to lens planes in astrophysically relevant scenarios. We compare the projected area and the ratio of semi-major to semi-minor axes of the observed elliptical image shape for circular sources from the continuous, thick-lens method with the commonly assumed thin-lens approximation. We find that for truncated singular isothermal sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens approximation is accurate to better than 1 part in 10^4 in predicting the image area and axes ratios. For asymmetric thick lenses consisting of two massive clusters separated along the line of sight in redshift up to \Delta z = 0.2, we find that modeling the image distortion as two clusters in a single lens plane does not produce relative errors in image area or axes ratio more than 0.5%Comment: accepted to GR

    Steering proton migration in hydrocarbons using intense few-cycle laser fields

    Get PDF
    Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to control the movement of nuclei with tailored light, within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are monitored using coincident 3D momentum imaging spectroscopy, and described with a quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wavepacket by the intense off-resonant laser field.Comment: 5 pages, 4 figure

    Null Cones in Schwarzschild Geometry

    Get PDF
    Light cones of Schwarzschild geometry are studied in connection to the Null Surface Formulation and gravitational lensing. The paper studies the light cone cut function's singularity structure, gives exact gravitational lensing equations, and shows that the "pseudo-Minkowski" coordinates are well defined within the model considered.Comment: 31 pages, 5 figure

    Rossby waves in rapidly rotating Bose-Einstein condensates

    Full text link
    We predict and describe a new collective mode in rotating Bose-Einstein condensates, which is very similar to the Rossby waves in geophysics. In the regime of fast rotation, the Coriolis force dominates the dynamics and acts as a restoring force for acoustic-drift waves along the condensate. We derive a nonlinear equation that includes the effects of both the zero-point pressure and the anharmonicity of the trap. It is shown that such waves have negative phase speed, propagating in the opposite sense of the rotation. We discuss different equilibrium configurations and compare with those resulting from the Thomas-Fermi approximation.Comment: 4 pages, 2 figures (submitted to PRL

    Iterative Approach to Gravitational Lensing Theory

    Full text link
    We develop an iterative approach to gravitational lensing theory based on approximate solutions of the null geodesic equations. The approach can be employed in any space-time which is ``close'' to a space-time in which the null geodesic equations can be completely integrated, such as Minkowski space-time, Robertson-Walker cosmologies, or Schwarzschild-Kerr geometries. To illustrate the method, we construct the iterative gravitational lens equations and time of arrival equation for a single Schwarzschild lens. This example motivates a discussion of the relationship between the iterative approach, the standard thin lens formulation, and an exact formulation of gravitational lensing.Comment: 27 pages, 2 figures, submitted to Phys.Rev.D, minor revisions, new reference

    A Cellular Automaton Model for Diffusive and Dissipative Systems

    Get PDF
    We study a cellular automaton model, which allows diffusion of energy (or equivalently any other physical quantities such as mass of a particular compound) at every lattice site after each timestep. Unit amount of energy is randomly added onto a site. Whenever the local energy content of a site reaches a fixed threshold Ec1E_{c1}, energy will be dissipated. Dissipation of energy propagates to the neighboring sites provided that the energy contents of those sites are greater than or equal to another fixed threshold Ec2(≤Ec1)E_{c2} (\leq E_{c1}). Under such dynamics, the system evolves into three different types of states depending on the values of Ec1E_{c1} and Ec2E_{c2} as reflected in their dissipation size distributions, namely: localized peaks, power laws, or exponential laws. This model is able to describe the behaviors of various physical systems including the statistics of burst sizes and burst rates in type-I X-ray bursters. Comparisons between our model and the famous forest-fire model (FFM) are made.Comment: in REVTEX 3.0. Figures available on request. Extensively revised. Accepted by Phys.Rev.

    Disorder-Induced Shift of Condensation Temperature for Dilute Trapped Bose Gases

    Full text link
    We determine the leading shift of the Bose-Einstein condensation temperature for an ultracold dilute atomic gas in a harmonic trap due to weak disorder by treating both a Gaussian and a Lorentzian spatial correlation for the quenched disorder potential. Increasing the correlation length from values much smaller than the geometric mean of the trap scale and the mean particle distance to much larger values leads first to an increase of the positive shift to a maximum at this critical length scale and then to a decrease.Comment: Author information under http://www.theo-phys.uni-essen.de/tp/ags/pelster_di

    Charge Transfer in Partition Theory

    Full text link
    The recently proposed Partition Theory (PT) [J.Phys.Chem.A 111, 2229 (2007)] is illustrated on a simple one-dimensional model of a heteronuclear diatomic molecule. It is shown that a sharp definition for the charge of molecular fragments emerges from PT, and that the ensuing population analysis can be used to study how charge redistributes during dissociation and the implications of that redistribution for the dipole moment. Interpreting small differences between the isolated parts' ionization potentials as due to environmental inhomogeneities, we gain insight into how electron localization takes place in H2+ as the molecule dissociates. Furthermore, by studying the preservation of the shapes of the parts as different parameters of the model are varied, we address the issue of transferability of the parts. We find good transferability within the chemically meaningful parameter regime, raising hopes that PT will prove useful in chemical applications.Comment: 12 pages, 16 figure

    SISTEM MONITORING MENGGUNAKAN KAMERA IP

    Get PDF
    RIFKI YUSUF SETIAWAN, 2010, SYSTEM MONITORING USING IP CAMERA. 3rd Diploma Program Computer Science, Faculty of Mathematics and Natural Science, Sebelas Maret University of Surakarta. The level of criminality was quite high, pushed the existence of the production of the monitoring system which gave the more effective safety.The main aim of this final report is to investigate the way of designing and developing program to monitor a room by using IP camera. The data were collected though experiment, observation, and library research. This study revealed that IP Camera was capable of monitoring room automatically and the software to manage the displayed was created by delphi 7 . Based on the findings, it could be concluded that we could monitor a room with IP camera. Keyword : IP camera, security, delphi 7, monitorin
    • …
    corecore