145 research outputs found

    Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens

    Get PDF
    Lupus autoantibodies interact directly with distinct glomerular and vascular cell surface antigens. We have identified monoclonal anti-DNA antibodies derived from lupus prone MRL-lpr/lpr mice that produce glomerular immune deposits and nephritis after passive transfer to normal mice. Particularly noteworthy is that the location of immune deposition varied among nephritogenic Ig, and this was associated with distinctive histologies and clinical disease profiles. Although their autoantigen binding properties differed, they were highly cross-reactive, in a manner similar to Ig deposited in glomeruli of lupus mice. This antigen binding profile was also typical of other previously described nephritogenic autoantibodies that bound directly to glomerular antigens to initiate immune deposit formation. In this study, we questioned whether ligation of different glomerular antigens by individual autoantibodies could contribute to the observed differences in the location of immune deposits. To examine this possibility, monoclonal anti-DNA antibodies (IgG2a) that produced glomerular immune deposits in different locations were evaluated. H221 produced mesangial, intracapillary (that is, intraluminal or within the capillary lumen) and subendothelial deposits associated with heavy proteinuria, whereas H147 produced mesangial, subendothelial and linear basement membrane deposits associated with proliferative glomerulonephritis. Initially, the capacity of H221 and H147 to bind directly to glomerular and vascular cell surfaces was evaluated. As demonstrated by FACS, H221 bound preferentially to mesangial cells whereas H147 bound preferentially to endothelial cells. To identify possible target cell surface antigens, Western blots, immunoprecipitation of surface labeled cells, and 2D gel electrophoresis were employed. H221 reacted with a 108kDa protein on mesangial cells not identified by H147, whereas H147 reacted with a 45kDa protein on endothelial cells not identified by H221. These results support the hypothesis that some nephritogenic lupus autoantibodies initiate immune deposit formation through direct interaction with glomerular antigens. Furthermore, they suggest that the site of immune deposition is determined by both antigen binding properties of the relevant antibody and the location of its target ligand within the glomerulus. In a given individual, therefore, the predominant autoantibody-glomerular antigen interaction may influence the morphologic and clinical phenotype expressed. Variation in the predominant interaction may also contribute to variations in disease expression among individuals with lupus nephritis

    Hyaluronan Export through Plasma Membranes Depends on Concurrent K+ Efflux by Kir Channels

    Get PDF
    Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K+ channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl2 which all belong to ATP-sensitive inwardly-rectifying Kir channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K+ channels Kir3.4 and Kir6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K+ efflux

    Cytostatic potential of novel agents that inhibit the regulation of intracellular pH

    Get PDF
    Cells within the acidic extracellular environment of solid tumours maintain their intracellular pH (pHi) through the activity of membrane-based ion exchange mechanisms including the Na+/H+ antiport and the Na+-dependent Cl−/HCO3− exchanger. Inhibition of these regulatory mechanisms has been proposed as an approach to tumour therapy. Previously available inhibitors of these exchangers were toxic (e.g. 4,4-diisothiocyanstilbene-2,2-disulphonic acid), and/or non-specific (e.g. 5-N-ethyl-N-isopropyl amiloride). Using two human (MCF7, MDA-MB231) and one murine (EMT6) breast cancer cell lines, we evaluated the influence of two new agents, cariporide (an inhibitor of the Na+/H+ antiport) and S3705 (an inhibitor of the Na+-dependent Cl−/HCO3− exchanger) on the regulation of intracellular pH (pHi). The cytotoxicity of the two agents was assessed by using clonogenic assays. Our results suggest that cariporide has similar efficacy and potency to 5-N-ethyl-N-isopropyl amiloride for inhibition of Na+/H+ exchange while S3705 is more potent and efficient than 4,4-diisothiocyanstilbene-2,2-disulphonic acid in inhibiting Na+-dependent Cl−/HCO3− exchange. The agents inhibited the growth of tumour cells when they were incubated at low pHe (7.0–6.8), but were non-toxic to cells grown at doses that inhibited the regulation of pHi. Our results indicate that cariporide and S3705 are selective cytostatic agents under in vitro conditions that reflect the slightly acidic microenvironment found in solid tumours

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Functional cross talk between ENaC and pendrin

    No full text
    corecore