334 research outputs found

    Elastic constants and volume changes associated with two high-pressure rhombohedral phase transformations in vanadium

    Get PDF
    We present results from ab initio calculations of the mechanical properties of the rhombohedral phase (beta) of vanadium metal reported in recent experiments, and other predicted high-pressure phases (gamma and bcc), focusing on properties relevant to dynamic experiments. We find that the volume change associated with these transitions is small: no more than 0.15% (for beta - gamma). Calculations of the single crystal and polycrystal elastic moduli (stress-strain coefficients) reveal a remarkably small discontinuity in the shear modulus and other elastic properties across the phase transitions even at zero temperature where the transitions are first order.Comment: 6 pages, 3 figure

    Electronic and structural properties of vacancies on and below the GaP(110) surface

    Full text link
    We have performed total-energy density-functional calculations using first-principles pseudopotentials to determine the atomic and electronic structure of neutral surface and subsurface vacancies at the GaP(110) surface. The cation as well as the anion surface vacancy show a pronounced inward relaxation of the three nearest neighbor atoms towards the vacancy while the surface point-group symmetry is maintained. For both types of vacancies we find a singly occupied level at mid gap. Subsurface vacancies below the second layer display essentially the same properties as bulk defects. Our results for vacancies in the second layer show features not observed for either surface or bulk vacancies: Large relaxations occur and both defects are unstable against the formation of antisite vacancy complexes. Simulating scanning tunneling microscope pictures of the different vacancies we find excellent agreement with experimental data for the surface vacancies and predict the signatures of subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    First principles elastic constants and electronic structure of alpha-Pt_2Si and PtSi

    Full text link
    We have carried out a first principles study of the elastic properties and electronic structure for two room-temperature stable Pt silicide phases, tetragonal alpha-Pt_2Si and orthorhombic PtSi. We have calculated all of the equilibrium structural parameters for both phases: the a and c lattice constants for alpha-Pt_2Si and the a, b, and c lattice constants and four internal structural parameters for PtSi. These results agree closely with experimental data. We have also calculated the zero-pressure elastic constants, confirming prior results for pure Pt and Si and predicting values for the six (nine) independent, non-zero elastic constants of alpha-Pt_2Si (PtSi). These calculations include a full treatment of all relevant internal displacements induced by the elastic strains, including an explicit determination of the dimensionless internal displacement parameters for the three strains in alpha-Pt_2Si for which they are non-zero. We have analyzed the trends in the calculated elastic constants, both within a given material as well as between the two silicides and the pure Pt and Si phases. The calculated electronic structure confirms that the two silicides are poor metals with a low density of states at the Fermi level, and consequently we expect that the Drude component of the optical absorption will be much smaller than in good metals such as pure Pt. This observation, combined with the topology found in the first principles spin-orbit split band structure, suggests that it may be important to include the interband contribution to the optical absorption, even in the infrared region.Comment: v1: 27 pages, 7 figures, 13 tables submitted to Phys. Rev. B v2: 10 pages, 4 figures, 12 tables (published in Phys. Rev B) contains only ab-initio calculations; valence force field models are now in a separate paper: cond-mat/010618
    corecore