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Abstract

First-principles total energy calculation based on the exact muffin-tin orbital and full 

potential linear muffin-tin orbital methods were used to calculate the equation of state 

and shear elastic constants of bcc V, Nb, and the V95Nb05 disordered alloy as a function 

of pressure up to 6 Mbar. We found a mechanical instability in C44 and a corresponding 

softening in C´ at pressures ~ 2 Mbar for V. Both shear elastic constants show softening 

at pressures ~ 0.5 Mbar for Nb. Substitution of 5 at. % of V with Nb removes the 

instability of V with respect to trigonal distortions in the vicinity of 2 Mbar pressure, but 
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still leaves the softening of C44 in this pressure region. We argue that the pressure 

induced shear instability (softening) of V (Nb) originates from the electronic system and 

can be explained by a combination of the Fermi surface nesting, electronic topological 

transition, and band Jahn-Teller effect.

Keywords: A. Metals, D. Elastic properties, D. Electronic structure, D Fermi surface.

1. Introduction

The group-VB transition metals (V, Nb, and Ta) have been subject of numerous 

experimental and theoretical studies [1-15] in 60s – 80s due to the high superconducting 

transition temperatures of its components (for example, Nb has the highest 

superconducting transition temperature Tc = 9.25 K among the elemental metals) and 

unique mechanical properties at extremely high temperatures that place these metals in 

the position of basic building blocks of intermetallic compounds. However at that time, 

most of this research was restricted to ambient pressure conditions or pressures bellow 50 

kbar. During the past 15 years the development of new techniques for electric and 

magnetic measurements in a diamond-anvil cell (DAC) has allowed for performing

measurements at a megabar pressures. Struzhkin et al [16] measured the superconducting 

transition temperature of Nb in the pressure range up to 1.32 Mbar. They observed 

anomalies in Tc(p) at 50-60 kbar and 600-700 kbar and suggested that these anomalies

arise from electronic topological transitions (ETT). Later Ishizuka et al [17] performed 

similar DAC experiments on V in the pressure range up to 1.2 Mbar. They discovered 

that Tc = 5.3 K at ambient pressure and increases linearly with pressure and reaches 17.2 
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K (the highest Tc among the elemental metals reported so far) at 1.2 Mbar. However, in 

contrast to Nb, these measurements did not find any indications of anomalies in Tc for V 

within this pressure range. Takemura [18] performed high-pressure DAC powder X-ray 

diffraction experiments on V and Nb and found no anomalies, which could be connected 

with ETT, in the equations of state (EOS) up to the maximum pressure of 1.54 Mbar. In 

order to explore the possibility of a structural phase transition from bcc to another phase, 

Suzuki and Otani [19] performed the first-principles calculations of lattice dynamics of V 

in the pressure range up to 1.5 Mbar. They found that the transverse acoustic phonon 

mode TA [ξ00] around ξ =1/4 shows a dramatic softening under pressure and becomes

imaginary at pressures higher than ~ 1.3 Mbar, indicating a possibility of such structural 

phase transition. Since in the limit of long–wave lengths (q → 0) this mode is directly 

related to the elastic constant C44, clear understanding of the anomaly in the TA curve is 

principally important in the problem of the shear lattice stability of bcc V. The authors, 

however, did not discuss the physical reasons behind the dip in the TA.

This paper is devoted to the ab initio study of the EOS and shear elastic constants of 

V, Nb, and the V95Nb05 disordered alloy in the pressure range up to 6 Mbar. We used 

selected density functional theory (DFT) approaches to model the V-Nb system at 

ambient pressure as well as extreme conditions. We discuss the physical nature of the 

anomalies in the shear elastic constants of V in terms of the combined Fermi surface (FS) 

nesting, ETT, and band Jahn–Teller (J-T) effect.

The paper is organized as follows. Pertinent details of computation methods are 

described in Section 2, followed by results Section 3 and discussion Section 4. We 

present our conclusions in Section 5.
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2. Computational details

In the present paper we employ two complimentary computational techniques. The 

calculations we have referred to as exact muffin-tin orbitals (EMTO) are performed using 

a scalar-relativistic Green’s function technique based on an improved screened Korringa-

Kohn-Rostoker method, where the one-electron potential is represented by optimized 

overlapping muffin-tin (OOMT) potential spheres [20-24]. Inside the potential spheres 

the potential is spherically symmetric and it is constant between spheres. The radii of the 

potential spheres, the spherical potentials inside the spheres, and the constant value from 

the interstitial are determined by minimizing (i) the deviation between the exact and 

overlapping potentials, and (ii) the errors coming from the overlap between spheres. 

Thus, the OOMT potential ensures a more accurate description of the full potential 

compared to the conventional muffin-tin or non-overlapping approach.

Within the EMTO formalism, the one-electron states are calculated exactly for the 

OOMT potentials. As an output of the EMTO calculations, one can determine the self-

consistent Green’s function of the system and the complete, non-spherically symmetric 

charge density. Finally, the total energy is calculated using the full charge density 

technique [23, 25]. For the exchange/correlation approximation we use the generalized 

gradient approximation (GGA) [26]. For the total energy of random substitutional alloys, 

the EMTO method has been recently combined with the coherent potential approximation 

(CPA) [24, 27]. 

The calculations are performed for a basis set including valence spd orbitals 

whereas the core states were recalculated at each iteration. Integration over the 
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irreducible wedge of the Brillouin zone (IBZ) is performed using the special k-point 

method [28] with 819 k-points for bcc lattice. The Green’s function has been calculated 

for 60 complex energy points distributed exponentially on a semicircle with a 3.5 Ry (3.8 

Ry for V95Nb05 alloy) diameter enclosing the occupied states. The equilibrium density is 

obtained from a Murnaghan fit [29] to about 16 total energies calculated as a function of 

the lattice constant. For the calculation of C´ and C44 we use volume conserving 

orthorhombic and monoclinic setups for tetragonal and trigonal distortions, respectively

[30], performing integration over the IBZ with 15625 (C´) and 17457 (C44) k-points.

As EMTO method does not allow us to calculate the energy bands, we applied a full-

potential linear muffin-tin orbitals (FPLMTO) method [31-33] for this purpose. This 

latter method has no geometrical approximations to its one-electron potential or charge 

density and is therefore well suited for low symmetry or distorted crystals (we also used 

this method for shear elastic constants calculations for V and Nb). Within FPLMTO 

approach, the crystal is divided up into regions inside atomic spheres, where 

Schrödinger’s equation is solved numerically, and an interstitial region. In all LMTO 

methods the wavefunctions in the interstitial region are Hankel functions. An 

interpolation procedure is used for evaluating interstitial integrals involving products of 

Hankel functions. The triple-k basis is composed of three sets of s, p, d, and f LMTOs per 

atom with Hankel function kinetic energies of –k2 = -0.01, -1.0, and -2.3 Ry (48 orbitals 

per atom). The Hankel functions decay exponentially as e-kr. The angular momentum 

sums involved in the interpolation procedure are carried up to a maximum of l = 6. For 

the exchange/correlation approximation we again use the GGA [26]. The integration over 
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the IBZ was carried out using the tetrahedron method [34] with 48×48×48 shifted mesh 

resulting in 14724 and 14700 k-points for C´ and C44 shear elastic constants, respectively.

The generalized susceptibility of non-interacting electrons was selected in order to 

detect the nesting at the FS. This function was calculated by using the standard linear 

muffin-tin orbitals method in the atomic sphere approximation with so-called combined 

correction terms [35] and the highly precise analytic tetrahedron method [36]: in order to 

reach the high precision, the IBZ of the bcc lattice was divided into 3375 tetrahedra.

3. Results 

Figure 1 shows the EOS (EMTO) for V and Nb as well as for the V95Nb05 disordered 

alloy. For V, calculated equilibrium volume (V0) and bulk modulus (B0) are 13.65 Å3 and 

1.832 Mbar, respectively. FPLMTO calculations give V0 = 13.53 Å3 and B0 = 1.827 

Mbar. These results are in good agreement with experimental density of V, V0 = 13.91 Å3

[37], and recently measured bulk modulus, B0 = 1.880 Mbar [18], as well as results of 

FPLMTO calculations by Suzuki and Otani, B0 = 1.946 Mbar [19]. For Nb, EMTO 

calculations give V0 = 18.41 Å3 and B0 = 1.666 Mbar, and FPLMTO calculations give V0

= 18.26 Å3 and B0 = 1.707 Mbar. Both EMTO and FPLMTO results are in good 

agreement with experimental density of Nb, V0 = 17.97 Å3 [37], and recently measured

bulk modulus, B0 = 1.680 Mbar [18].

Figure 2 and Figure 3 show pressure dependence of the shear elastic moduli of V and 

Nb, respectively. EMTO calculations reveal a mechanical instability in C44 and 

corresponding softening in C´ at pressures ~ 2 Mbar for V (similar tendency is observed 

from FPLMTO calculations, but at a lower pressure). Both shear elastic constants show 
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softening at pressures ~ 0.5 Mbar for Nb. One should also mention that similar softening 

for C44 modulus, although less pronounced, was predicted from FPLMTO calculations 

for Ta [39], the remaining representative of the group-VB. In order to correlate these

phenomena with the electronic structure behavior we constructed (FPLMTO) band 

energies for V (undistorted and under the trigonal distortion) at different pressures 

(Figure 4 – Figure 6). As one can see from Figure 4 (experimental equilibrium volume), 

the trigonal distortion causes the levels with t2g symmetry (Γ25` and H25`) to split and 

levels ∆2 and Σ3 to hybridize with levels ∆5 and Σ1, respectively. Similar features of the 

band energies of V were also described by Ohta and Shimizu [15]. The 3-fold degenerate 

Γ25` pure d-state is unoccupied at low pressure but shifts to lower energy and passes

through the Fermi level as pressure increases (Figure 5 and Figure 6). 

Consider now how the density of states (DOS) behaves under pressure and distortion. 

Figure 7a shows the increment due to the trigonal distortion of the DOS at the Fermi 

level, ∆N(EF), as a function of pressure. This plot shows that for V, ∆N(EF) increases 

under deformations at ambient pressure but begins to decrease as pressure increases and 

passes a minimum in the vicinity of ~ 3 Mbar. Additional analysis indicates that as the 

value of the deformation decreases (δ → 0), ∆N(EF) the minimum moves right 

approaching the region where the Γ25` point crosses the Fermi level (~ 3.3 Mbar 

according to EMTO calculations). Further compression causes ∆N(EF) to increase again 

monotonically. On the other hand, the Madelung (electrostatic) contribution to the C44

elastic constant is positive for all pressures under consideration (Figure 7b). 

The pressure evolution of the FS of V can be understood from its cross sections in the 

central {100} (triangular (ΓHN)) and {110} (rectangular (ΓHNPN)) planes shown in 
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Figure 8a (the notations are borrowed from Mackintosh and Andersen [40]). Since V

contains 5 valence electrons per atom, they fill entirely the first, most of the second and a 

significant part of the third conduction band. In this figure, the first filled band is not 

shown, the second band (2) has a closed hole-surface centered at the point Γ and has the 

shape of a distorted octahedron. The third band (3) has closed distorted hole-ellipsoids 

centered at points N and multiple connected opened hole-tubes, so called ‘jungle-gym’ (J-

G), which extend from Γ to H in the [100] (∆) directions. At ambient pressure, the 

calculated FS sections for V look similar to previously reported theoretical results [1, 3, 

5, 7, 9, 11–14], however, at elevated pressures we did not find any evidences of the ETT 

predicted by Papaconstantopoulos et al [5] whose calculations revealed that at the 5% 

reduced lattice spacing, which corresponds to ~ 240 kbar pressure, the distorted hole

ellipsoids around points N merge with the J-G hole tubes creating a such kind of a hole 

neck along the Γ-N (Σ) direction. Instead we found that as pressure increases, the 

distorted octahedron hole-pocket around the Γ point shrinks, indicating a movement of 

this point towards the Fermi level (Figure 8b), and the J-G hole tube terminates at the 

[100] direction (Figure 8c).

Calculated at ambient pressure generalized susceptibility, χ(q), along the Γ-H ([ξ00])

direction (Figure 9a) shows a slightly pronounced peak at  ξ ≈ 0.24. Detailed analysis of 

partial contributions to the generalized electron susceptibility indicates that this peak is 

due to 3rd → 3rd electron transitions (Figure 9b) or, in other words, due to the nesting 

properties of the FS in the 3rd band (intra-band nesting). As can be seen from Figure 9b, 

this peak shifts swiftly towards the smaller ξ  (lower wave vector q) as pressure is 

applied, for example, at 1.8 Mbar the peak is located at ξ ≈ 0.06. The half of the nesting 
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vector (|qn|/2 ≈ π/a[0.24, 0, 0]) can be clearly seen in Figure 8a. It corresponds to the 

position of the anomaly in the TA found by Suzuki and Otani [19]. As pressure increases, 

|qn| decreases (Figure 8b) and finally becomes equal to zero at pressure of the above 

mentioned termination of the J-G tube.

Figure 10 and Figure 11 show calculated (EMTO) pressure dependence of the C44

elastic modulus and ∆N(EF) of the V95Nb05 disordered alloy, respectively. Notice that an

addition of only 5 at. % of Nb  stabilizes V mechanically, whereas significant softening 

in the C44 shear modulus still takes place at ~ 2 Mbar pressure. This feature correlates 

with ∆N(EF) behavior - it decreases as pressure increases up to ~ 3 Mbar, but for the 

V95Nb05 disordered alloy this effect is significantly smaller than for pure V.

4. Discussion

From the data presented above it is clear that softening in the shear constants of V and 

Nb is entirely due to the band structure features and not to the electrostatic forces (the 

latter stabilize the lattice under pressure). This softening can be attributed simultaneously

to three different electronic structure peculiarities, namely, to the FS nesting, ETT, and  

the band J–T effect.

The nesting vector qn, spanning two flat pieces of the FS in the 3rd band, already 

exists at zero pressure and leads to the Kohn anomaly in the transverse acoustic phonon 

mode TA [ξ00] [19] for small |qn|/2 ≈ 0.24π/a.  This anomaly also softens the elastic 

constant C44 because in the limit of long waves (q → 0) ρω2(q)/q2 → C44. It is remarkable

that under pressure qn shrinks  at a fast rate and the effect of the Kohn anomaly on C44  

increases. As soon as qn turns to zero, the ETT, when the neck between two electronic 
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sheets of the FS appears (the J-G hole-tube terminates at the [100] direction), takes place.

Qualitatively, it is analogous to the event when the FS touches the BZ boundary and is 

always accompanied by a sharp minimum in the shear elastic constants [41]. So as qn →

0, the softening in C44 develops up to the point when qn turns to zero. It is very important 

that the condition qn = 0 is reached long before the Fermi level passes the triple–

degenerate term  Γ25`. 

The pressure–induced shear instability in V can be also, partially, due to the ‘band J-T

effect’. As already was mentioned, the trigonal distortion splits the terms Γ25` and H25`

and, besides, leads to a hybridization between  ∆2 and ∆5  from one side and between Σ3

and Σ1 – from the other. All these splitting/shifting/hybridization effects tend  to open the 

energy gaps on the Fermi level and decrease  the total energy. For example, the initially 

triple-degenerate Γ25` point splits in such a way that one of the split level goes up above 

and another two go down below the Fermi level causing the DOS at the Fermi level to 

decrease. 

5. Conclusions

First-principles total-energy calculations reveal a tendency for the group-VB 

transition metals V and Nb to soften their shear elastic moduli at elevated pressures. We 

conclude that this pressure-induced softening is due to the electronic system, exclusively,

and has a complicated mechanism. For V, expansion of the pressure range to higher 

values (above 1.5 Mbar) is desirable to obtain information on possibility of a structural 

transition from bcc to another phase. The proposed study should be a real challenge for 

experimentalists because these measurements must be performed at a maximum low 
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temperature (softening of the shear elastic constants disappears as temperature increases) 

and the hydrogen should be removed from the samples (there is a tendency of the elastic 

constant C44 of V and Nb to increase with increasing hydrogen concentration [42]).
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Figure 1.  Equations of state of V, Nb, and the disordered V95Nb05 alloy.
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Figure 2. Pressure dependence of the shear elastic moduli of V. Experimental data at 

ambient pressure are according to Ref. [38]. 
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Figure 3. Pressure dependence of the shear elastic moduli of Nb. Experimental data at 

ambient pressure are according to Ref. [38].
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Figure 4a. Band energies of V at experimental equilibrium volume: undistorted.
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Figure 4b. Band energies of V at experimental equilibrium volume: distorted.
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Figure 5a. Band energies of V at 2.089 Mbar: undistorted.
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Figure 5b. Band energies of V at 2.089 Mbar: distorted.
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Figure 6a. Band energies of V at 5.734 Mbar: undistorted.
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Figure 6b. Band energies of V at 5.734 Mbar: (b) distorted.
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Figure 7a. The increment of the DOS at the Fermi level of V as a function of pressure.
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Figure 7b. The electrostatic contribution to the C44 elastic modulus of V as a function of 

pressure.
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Figure 8a. Central {100} and {110} cross sections of the FS of V at ambient pressure.
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Figure 8b. Central {100} and {110} cross sections of the FS of V at 2.216 Mbar.
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Figure 8c. Central {100} and {110} cross sections of the FS of V at 3.302 Mbar.



29

Figure 9a. Generalized total electron susceptibility of V along the Γ-H ([100]) direction.



30

Figure 9b. Generalized partial (3rd → 3rd intra-band transition) electron susceptibility of 

V along the Γ-H ([100]) direction.
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Figure 10. Pressure dependence of the shear elastic modulus C44 of the disordered 

V95Nb05 alloy.
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Figure 11. The increment DOS at the Fermi level of V and the disordered V95Nb05 alloy 

as a function of pressure.


