33 research outputs found

    Engineering design tropisms: Utilization of a bamboo-resin joint for voxelized network geometries

    Get PDF
    We propose the combination of the traditional construction material bamboo with a novel epoxy-resin joint. The joint forms a bending-resisting connection that eliminates the need for diagonal members. This allows its utilization along rectangular grids as was tested with the design of a prototype structure that occupies a voxelized space. The design process used an agent-based simulation to mediate between design intent, site and structural considerations. The prototype was constructed with a robotic milling of the components and forms a successful application of the joints and design methodology

    Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.</p> <p>Methods</p> <p>The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.</p> <p>Results</p> <p>All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. On the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phase-GnRH-a administration group. The majority of the results presented heterogeneity.</p> <p>Conclusions</p> <p>These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.</p

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    The Endometrial Response to Chorionic Gonadotropin Is Blunted in a Baboon Model of Endometriosis

    No full text
    Endometriosis-associated infertility has a multifactorial etiology. We tested the hypothesis that the endometrial response to the early embryonic signal, human chorionic gonadotropin (hCG), alters over time in a nonhuman primate model of endometriosis. Animals with experimental or spontaneous endometriosis were treated with hCG (30 IU/d), from d 6 after ovulation for 5 d, via an oviductal cannula. Microarray analysis of endometrial transcripts from baboons treated with hCG at 3 and 6 months of disease (n = 6) identified 22 and 165 genes, respectively, whose levels differed more than 2-fold compared with disease-free (DF) animals treated with hCG (P < 0.01). Quantitative RT-PCR confirmed abnormal responses of known hCG-regulated genes. APOA1, SFRP4, and PAPPA, which are normally down-regulated by hCG were up-regulated by hCG in animals with endometriosis. In contrast, the ability of hCG to induce SERPINA3 was lost. Immunohistochemistry demonstrated dysregulation of C3 and superoxide dismutase 2 proteins. We demonstrate that this abnormal response to hCG persists for up to 15 months after disease induction and that the nature of the abnormal response changes as the disease progresses. Immunohistochemistry showed that this aberrant gene expression was not a consequence of altered LH/choriogonadotropin receptor distribution in the endometrium of animals with endometriosis. We have shown that endometriosis induces complex changes in the response of eutopic endometrium to hCG, which may prevent the acquisition of the full endometrial molecular repertoire necessary for decidualization and tolerance of the fetal allograft. This may in part explain endometriosis-associated implantation failure
    corecore