44 research outputs found

    Tracing drought effects from the tree to the stand growth in temperate and Mediterranean forests: insights and consequences for forest ecology and management

    Get PDF
    How drought affects tree and stand growth is an old question, but is getting unprecedented relevance in view of climate change. Stress effects related to drought have been mostly studied at the individual tree level, mostly investigating dominant trees and using their responses as indicator for the impact at the stand level. However, findings at tree and stand level may differ, as the stand responses include interactions and feedbacks that may buffer or aggravate what is observed at the individual tree level. Here, we trace drought effects on growth and development from tree to the stand scale. Therefore, we analyse annually measured data from long-term experiments in temperate and Mediterranean forests. With this analysis, we aim to disclose how well results of dominant tree growth reflect stand-level behaviour, hypothesizing that drought resistance of dominant trees’ can strongly deviate from the overall sensitivity of the stand. First, we theoretically derive how drought responses at the stand level emerge from the tree-level behaviour, thereby considering that potential drought resistance of individual trees is modulated by acclimation and tree–tree interactions at the stand level and that the overall stress response at the stand level results from species-specific and size-dependent individual tree growth and mortality. Second, reviewing respective peer-reviewed literature (24 papers) and complementing findings by own measurements (22 experiments) from temperate and Mediterranean monospecific and mixed-species forests, we are able to reveal main causes for deviations of tree-level and stand-level findings regarding drought stress responses. Using a long-term experiment in Norway spruce (Picea abies (L.) KARST.) and European beech (Fagus sylvatica L.), we provide evidence that the species-dependent and size-dependent reactions matter and how the size–frequency distribution affects the scaling. We show by examples that tree-level derived results may overestimate growth losses by 25%. Third, we investigate the development of the growth dominance coefficient based on measurements gathered at the Bavarian forest climate stations. We show that drought changes stand biomass partitioning in favour of small trees, reduce social differentiation, and homogenize the vertical structure of forests. Finally, we discuss the drought-related consequences of the social class-specific growth reaction patterns for inventory and monitoring and highlight the importance of these findings for understanding site-specific stand dynamics, for forest modelling, and for silvicultural management

    Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.</p> <p>Methods</p> <p>The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.</p> <p>Results</p> <p>All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. On the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phase-GnRH-a administration group. The majority of the results presented heterogeneity.</p> <p>Conclusions</p> <p>These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.</p

    Seminal Plasma Enhances Cervical Adenocarcinoma Cell Proliferation and Tumour Growth In Vivo

    Get PDF
    Cervical cancer is one of the leading causes of cancer-related death in women in sub-Saharan Africa. Extensive evidence has shown that cervical cancer and its precursor lesions are caused by Human papillomavirus (HPV) infection. Although the vast majority of HPV infections are naturally resolved, failure to eradicate infected cells has been shown to promote viral persistence and tumorigenesis. Furthermore, following neoplastic transformation, exposure of cervical epithelial cells to inflammatory mediators either directly or via the systemic circulation may enhance progression of the disease. It is well recognised that seminal plasma contains an abundance of inflammatory mediators, which are identified as regulators of tumour growth. Here we investigated the role of seminal plasma in regulating neoplastic cervical epithelial cell growth and tumorigenesis. Using HeLa cervical adenocarcinoma cells, we found that seminal plasma (SP) induced the expression of the inflammatory enzymes, prostaglandin endoperoxide synthase (PTGS1 and PTGS2), cytokines interleukin (IL) -6, and -11 and vascular endothelial growth factor-A(VEGF-A). To investigate the role of SP on tumour cell growth in vivo, we xenografted HeLa cells subcutaneously into the dorsal flank of nude mice. Intra-peritoneal administration of SP rapidly and significantly enhanced the tumour growth rate and size of HeLa cell xenografts in nude mice. As observed in vitro, we found that SP induced expression of inflammatory PTGS enzymes, cytokines and VEGF-A in vivo. Furthermore we found that SP enhances blood vessel size in HeLa cell xenografts. Finally we show that SP-induced cytokine production, VEGF-A expression and cell proliferation are mediated via the induction of the inflammatory PTGS pathway

    Estrogen- and Progesterone (P4)-Mediated Epigenetic Modifications of Endometrial Stromal Cells (EnSCs) and/or Mesenchymal Stem/Stromal Cells (MSCs) in the Etiopathogenesis of Endometriosis

    Get PDF
    Endometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis

    Holzeigenschaften der Fichte bei unterschiedlicher Bestandesdichte [Wood properties of Norway spruce at different stand densities]

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected] Houtkund

    Integrating terrestrial laser scanning based inventory with sawing simulation

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected] Houtkund

    Zu einem Charakterisierungssatz von E. Artin

    No full text
    corecore