158 research outputs found

    Comparative structural and functional analysis of Bunyavirus and Arenavirus cap-snatching Endonucleases

    Get PDF
    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5β€² end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase

    Borcherds Algebras and N=4 Topological Amplitudes

    Full text link
    The perturbative spectrum of BPS-states in the E_8 x E_8 heterotic string theory compactified on T^2 is analysed. We show that the space of BPS-states forms a representation of a certain Borcherds algebra G which we construct explicitly using an auxiliary conformal field theory. The denominator formula of an extension G_{ext} \supset G of this algebra is then found to appear in a certain heterotic one-loop N=4 topological string amplitude. Our construction thus gives an N=4 realisation of the idea envisioned by Harvey and Moore, namely that the `algebra of BPS-states' controls the threshold corrections in the heterotic string.Comment: 39 page

    Analysis of feedback loops and robustness in network evolution based on Boolean models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many biological networks such as protein-protein interaction networks, signaling networks, and metabolic networks have topological characteristics of a scale-free degree distribution. Preferential attachment has been considered as the most plausible evolutionary growth model to explain this topological property. Although various studies have been undertaken to investigate the structural characteristics of a network obtained using this growth model, its dynamical characteristics have received relatively less attention.</p> <p>Results</p> <p>In this paper, we focus on the robustness of a network that is acquired during its evolutionary process. Through simulations using Boolean network models, we found that preferential attachment increases the number of coupled feedback loops in the course of network evolution. Whereas, if networks evolve to have more coupled feedback loops rather than following preferential attachment, the resulting networks are more robust than those obtained through preferential attachment, although both of them have similar degree distributions.</p> <p>Conclusion</p> <p>The presented analysis demonstrates that coupled feedback loops may play an important role in network evolution to acquire robustness. The result also provides a hint as to why various biological networks have evolved to contain a number of coupled feedback loops.</p

    Glutamate, GABA and Acetylcholine Signaling Components in the Lamina of the Drosophila Visual System

    Get PDF
    Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to Ξ³-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABAB type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABAB receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABAA receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in Ξ±-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness

    Management control systems in innovation companies: A literature based framework

    Get PDF
    Past research has traditionally argued that management control systems (MCSs) may present a hindrance to the creativity of innovation companies. This theoretical paper surveys the literature to focus an investigation on the MCSs of innovation companies. Within the object of control paradigm the paper develops and presents a theoretical model of the impact of eleven external, organisational and innovation related contingency factors on the MCSs in companies that engage in innovation activities. We also suggest measures for further empirical research. By formulating hypotheses on 43 potential interactions the model predicts contradictory influences on two direct control categories, results and action control, but stresses the importance of two indirect categories, personnel and cultural control. More specifically, the high levels of technological complexity and innovation capability in this type of company are expected to be negatively associated with the application of results and action control, whereas personnel and cultural seem to be more appropriate. Furthermore, important sources of finance, venture capital and public funding, are both hypothesised to be positively associated with the application of results, action and personnel control; whereas only public funding is predicted to be positively related to the application of cultural control. The principal contribution of this paper lies in synthesising the literature to provide a model of the impact of a unique set of eleven contingency factors for innovation companies on a broad scope of controls. In addition, the contingency model, if empirically validated, would add value by inferring the particular forms of management control which would be beneficial in innovative company settings. Β© 2014 Springer-Verlag Berlin Heidelberg

    Light regulation of metabolic pathways in fungi

    Get PDF
    Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes

    Principles of organelle spatial organization and interactions

    No full text
    • …
    corecore