2,218 research outputs found

    Holomorphic Anomaly in Gauge Theories and Matrix Models

    Full text link
    We use the holomorphic anomaly equation to solve the gravitational corrections to Seiberg-Witten theory and a two-cut matrix model, which is related by the Dijkgraaf-Vafa conjecture to the topological B-model on a local Calabi-Yau manifold. In both cases we construct propagators that give a recursive solution in the genus modulo a holomorphic ambiguity. In the case of Seiberg-Witten theory the gravitational corrections can be expressed in closed form as quasimodular functions of Gamma(2). In the matrix model we fix the holomorphic ambiguity up to genus two. The latter result establishes the Dijkgraaf-Vafa conjecture at that genus and yields a new method for solving the matrix model at fixed genus in closed form in terms of generalized hypergeometric functions.Comment: 34 pages, 2 eps figures, expansion at the monopole point corrected and interpreted, and references adde

    Growing Scale-Free Networks with Small World Behavior

    Get PDF
    In the context of growing networks, we introduce a simple dynamical model that unifies the generic features of real networks: scale-free distribution of degree and the small world effect. While the average shortest path length increases logartihmically as in random networks, the clustering coefficient assumes a large value independent of system size. We derive expressions for the clustering coefficient in two limiting cases: random (C ~ (ln N)^2 / N) and highly clustered (C = 5/6) scale-free networks.Comment: 4 pages, 4 figure

    Budget 2002: business taxation measures

    Get PDF
    Following the 2002 Budget, this Briefing Note examines some of the Chancellor's changes to business taxation. A number of Budget measures, including the research and development tax credit for large companies and the exemption of capital gains on the sale of subsidiaries, are welcome and should improve the efficiency of the UK's tax system. All of these measures were subject to extensive prior consultation. A number of other measures were not foreshadowed in the Pre-Budget Report. Three of these are examined here - the new 0% rate of corporation tax, the changes to North Sea taxation and the new anti-avoidance measures for stamp duty

    On the relation between quantum Liouville theory and the quantized Teichm"uller spaces

    Full text link
    We review both the construction of conformal blocks in quantum Liouville theory and the quantization of Teichm\"uller spaces as developed by Kashaev, Checkov and Fock. In both cases one assigns to a Riemann surface a Hilbert space acted on by a representation of the mapping class group. According to a conjecture of H. Verlinde, the two are equivalent. We describe some key steps in the verification of this conjecture.Comment: Contribution to the proceedings of the 6th International Conference on CFTs and Integrable Models, Chernogolovka, Russia, September 2002; v2: Typos corrected, typographical change

    Nonequilibrium transitions in complex networks: a model of social interaction

    Get PDF
    We analyze the non-equilibrium order-disorder transition of Axelrod's model of social interaction in several complex networks. In a small world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.Comment: 7 pages revtex4, 10 figures, related material at http://www.imedea.uib.es/PhysDept/Nonlinear/research_topics/Social

    Clustering properties of a generalised critical Euclidean network

    Full text link
    Many real-world networks exhibit scale-free feature, have a small diameter and a high clustering tendency. We have studied the properties of a growing network, which has all these features, in which an incoming node is connected to its iith predecessor of degree kik_i with a link of length \ell using a probability proportional to kiβαk^\beta_i \ell^{\alpha}. For α>0.5\alpha > -0.5, the network is scale free at β=1\beta = 1 with the degree distribution P(k)kγP(k) \propto k^{-\gamma} and γ=3.0\gamma = 3.0 as in the Barab\'asi-Albert model (α=0,β=1\alpha =0, \beta =1). We find a phase boundary in the αβ\alpha-\beta plane along which the network is scale-free. Interestingly, we find scale-free behaviour even for β>1\beta > 1 for α<0.5\alpha < -0.5 where the existence of a new universality class is indicated from the behaviour of the degree distribution and the clustering coefficients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the behaviour of most real networks for increasing negative values of α\alpha on the phase boundary.Comment: 4 pages REVTEX, 4 figure

    Reconstruction of thermally-symmetrized quantum autocorrelation functions from imaginary-time data

    Full text link
    In this paper, I propose a technique for recovering quantum dynamical information from imaginary-time data via the resolution of a one-dimensional Hamburger moment problem. It is shown that the quantum autocorrelation functions are uniquely determined by and can be reconstructed from their sequence of derivatives at origin. A general class of reconstruction algorithms is then identified, according to Theorem 3. The technique is advocated as especially effective for a certain class of quantum problems in continuum space, for which only a few moments are necessary. For such problems, it is argued that the derivatives at origin can be evaluated by Monte Carlo simulations via estimators of finite variances in the limit of an infinite number of path variables. Finally, a maximum entropy inversion algorithm for the Hamburger moment problem is utilized to compute the quantum rate of reaction for a one-dimensional symmetric Eckart barrier.Comment: 15 pages, no figures, to appear in Phys. Rev.

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated

    Gaussian Tunneling Model of c-Axis Twist Josephson Junctions

    Full text link
    We calculate the critical current density JcJJ^J_c for c-axis Josephson tunneling between identical high temperature superconductors twisted an angle ϕ0\phi_0 about the c-axis. We model the tunneling matrix element squared as a Gaussian in the change of wavevector q parallel to the junction, <t(q)2>exp(q2a2/2π2σ2)<|t({\bf q})|^2>\propto\exp(-{\bf q}^2a^2/2\pi^2\sigma^2). The JcJ(ϕ0)/JcJ(0)J^J_c(\phi_0)/J^J_c(0) obtained for the s- and extended-s-wave order parameters (OP's) are consistent with the Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} data of Li {\it et al.}, but only for strongly incoherent tunneling, σ20.25\sigma^2\ge0.25. A dx2y2d_{x^2-y^2}-wave OP is always inconsistent with the data. In addition, we show that the apparent conventional sum rule violation observed by Basov et al. might be understandable in terms of incoherent c-axis tunneling, provided that the OP is not dx2y2d_{x^2-y^2}-wave.Comment: 6 pages, 6 figure
    corecore