1,970 research outputs found

    Holomorphic Anomaly in Gauge Theories and Matrix Models

    Full text link
    We use the holomorphic anomaly equation to solve the gravitational corrections to Seiberg-Witten theory and a two-cut matrix model, which is related by the Dijkgraaf-Vafa conjecture to the topological B-model on a local Calabi-Yau manifold. In both cases we construct propagators that give a recursive solution in the genus modulo a holomorphic ambiguity. In the case of Seiberg-Witten theory the gravitational corrections can be expressed in closed form as quasimodular functions of Gamma(2). In the matrix model we fix the holomorphic ambiguity up to genus two. The latter result establishes the Dijkgraaf-Vafa conjecture at that genus and yields a new method for solving the matrix model at fixed genus in closed form in terms of generalized hypergeometric functions.Comment: 34 pages, 2 eps figures, expansion at the monopole point corrected and interpreted, and references adde

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated

    Reconstruction of thermally-symmetrized quantum autocorrelation functions from imaginary-time data

    Full text link
    In this paper, I propose a technique for recovering quantum dynamical information from imaginary-time data via the resolution of a one-dimensional Hamburger moment problem. It is shown that the quantum autocorrelation functions are uniquely determined by and can be reconstructed from their sequence of derivatives at origin. A general class of reconstruction algorithms is then identified, according to Theorem 3. The technique is advocated as especially effective for a certain class of quantum problems in continuum space, for which only a few moments are necessary. For such problems, it is argued that the derivatives at origin can be evaluated by Monte Carlo simulations via estimators of finite variances in the limit of an infinite number of path variables. Finally, a maximum entropy inversion algorithm for the Hamburger moment problem is utilized to compute the quantum rate of reaction for a one-dimensional symmetric Eckart barrier.Comment: 15 pages, no figures, to appear in Phys. Rev.

    Separability and Killing Tensors in Kerr-Taub-NUT-de Sitter Metrics in Higher Dimensions

    Full text link
    A generalisation of the four-dimensional Kerr-de Sitter metrics to include a NUT charge is well known, and is included within a class of metrics obtained by Plebanski. In this paper, we study a related class of Kerr-Taub-NUT-de Sitter metrics in arbitrary dimensions D \ge 6, which contain three non-trivial continuous parameters, namely the mass, the NUT charge, and a (single) angular momentum. We demonstrate the separability of the Hamilton-Jacobi and wave equations, we construct a closely-related rank-2 Staeckel-Killing tensor, and we show how the metrics can be written in a double Kerr-Schild form. Our results encompass the case of the Kerr-de Sitter metrics in arbitrary dimension, with all but one rotation parameter vanishing. Finally, we consider the real Euclidean-signature continuations of the metrics, and show how in a limit they give rise to certain recently-obtained complete non-singular compact Einstein manifolds.Comment: Author added, title changed, references added, focus of paper changed to Killing tensors and separability. Latex, 13 page

    Kerr-de Sitter Black Holes with NUT Charges

    Get PDF
    The four-dimensional Kerr-de Sitter and Kerr-AdS black hole metrics have cohomogeneity 2, and they admit a generalisation in which an additional parameter characterising a NUT charge is included. In this paper, we study the higher-dimensional Kerr-AdS metrics, specialised to cohomogeneity 2 by appropriate restrictions on their rotation parameters, and we show how they too admit a generalisation in which an additional NUT-type parameter is introduced. We discuss also the supersymmetric limits of the new metrics. If one performs a Wick rotation to Euclidean spacetime signature, these yield new Einstein-Sasaki metrics in odd dimensions, and Ricci-flat metrics in even dimensions. We also study the five-dimensional Kerr-AdS black holes in detail. Although in this particular case the NUT parameter is trivial, our investigation reveals the remarkable feature that a five-dimensional Kerr-AdS ``over-rotating'' metric is equivalent, after performing a coordinate transformation, to an under-rotating Kerr-AdS metric.Comment: Latex, 21 page

    Diffusion on random site percolation clusters. Theory and NMR microscopy experiments with model objects

    Full text link
    Quasi two-dimensional random site percolation model objects were fabricate based on computer generated templates. Samples consisting of two compartments, a reservoir of H2_2O gel attached to a percolation model object which was initially filled with D2_2O, were examined with NMR (nuclear magnetic resonance) microscopy for rendering proton spin density maps. The propagating proton/deuteron inter-diffusion profiles were recorded and evaluated with respect to anomalous diffusion parameters. The deviation of the concentration profiles from those expected for unobstructed diffusion directly reflects the anomaly of the propagator for diffusion on a percolation cluster. The fractal dimension of the random walk, dwd_w, evaluated from the diffusion measurements on the one hand and the fractal dimension, dfd_f, deduced from the spin density map of the percolation object on the other permits one to experimentally compare dynamical and static exponents. Approximate calculations of the propagator are given on the basis of the fractional diffusion equation. Furthermore, the ordinary diffusion equation was solved numerically for the corresponding initial and boundary conditions for comparison. The anomalous diffusion constant was evaluated and is compared to the Brownian case. Some ad hoc correction of the propagator is shown to pay tribute to the finiteness of the system. In this way, anomalous solutions of the fractional diffusion equation could experimentally be verified for the first time.Comment: REVTeX, 12 figures in GIF forma

    Photoelectrochemical Conditioning of MOVPE p-InP Films for Light-Induced Hydrogen Evolution: Chemical, Electronic and Optical Properties

    Get PDF
    Homoepitaxial p-InP(100) thin films prepared by MOVPE (metallorganic vapor phase epitaxy) were transformed into an InP/oxide-phosphate/Rh heterostructure by photoelectrochemical conditioning. Surface sensitive synchrotron radiation photoelectron spectroscopy indicates the formation of a mixed oxide constituted by In(PO_3)_3, InPO_4 and In_(2)O_3 as nominal components during photo-electrochemical activation. The operation of these films as hydrogen evolving photocathode proved a light-to-chemical energy conversion efficiency of 14.5%. Surface activation arises from a shift of the semiconductor electron affinity by 0.44 eV by formation of In-Cl interfacial dipoles with a density of about 10^(12) cm^(−2). Predominant local In2O3-like structures in the oxide introduce resonance states near the semiconductor conduction band edge imparting electron conductivity to the phosphate matrix. Surface reflectance investigations indicate an enhanced light-coupling in the layered architecture

    Gaussian Tunneling Model of c-Axis Twist Josephson Junctions

    Full text link
    We calculate the critical current density JcJJ^J_c for c-axis Josephson tunneling between identical high temperature superconductors twisted an angle ϕ0\phi_0 about the c-axis. We model the tunneling matrix element squared as a Gaussian in the change of wavevector q parallel to the junction, <t(q)2>exp(q2a2/2π2σ2)<|t({\bf q})|^2>\propto\exp(-{\bf q}^2a^2/2\pi^2\sigma^2). The JcJ(ϕ0)/JcJ(0)J^J_c(\phi_0)/J^J_c(0) obtained for the s- and extended-s-wave order parameters (OP's) are consistent with the Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} data of Li {\it et al.}, but only for strongly incoherent tunneling, σ20.25\sigma^2\ge0.25. A dx2y2d_{x^2-y^2}-wave OP is always inconsistent with the data. In addition, we show that the apparent conventional sum rule violation observed by Basov et al. might be understandable in terms of incoherent c-axis tunneling, provided that the OP is not dx2y2d_{x^2-y^2}-wave.Comment: 6 pages, 6 figure

    Upon the existence of short-time approximations of any polynomial order for the computation of density matrices by path integral methods

    Full text link
    In this article, I provide significant mathematical evidence in support of the existence of short-time approximations of any polynomial order for the computation of density matrices of physical systems described by arbitrarily smooth and bounded from below potentials. While for Theorem 2, which is ``experimental'', I only provide a ``physicist's'' proof, I believe the present development is mathematically sound. As a verification, I explicitly construct two short-time approximations to the density matrix having convergence orders 3 and 4, respectively. Furthermore, in the Appendix, I derive the convergence constant for the trapezoidal Trotter path integral technique. The convergence orders and constants are then verified by numerical simulations. While the two short-time approximations constructed are of sure interest to physicists and chemists involved in Monte Carlo path integral simulations, the present article is also aimed at the mathematical community, who might find the results interesting and worth exploring. I conclude the paper by discussing the implications of the present findings with respect to the solvability of the dynamical sign problem appearing in real-time Feynman path integral simulations.Comment: 19 pages, 4 figures; the discrete short-time approximations are now treated as independent from their continuous version; new examples of discrete short-time approximations of order three and four are given; a new appendix containing a short review on Brownian motion has been added; also, some additional explanations are provided here and there; this is the last version; to appear in Phys. Rev.

    The rigid limit in Special Kahler geometry; From K3-fibrations to Special Riemann surfaces: a detailed case study

    Get PDF
    The limiting procedure of special Kahler manifolds to their rigid limit is studied for moduli spaces of Calabi-Yau manifolds in the neighbourhood of certain singularities. In two examples we consider all the periods in and around the rigid limit, identifying the nontrivial ones in the limit as periods of a meromorphic form on the relevant Riemann surfaces. We show how the Kahler potential of the special Kahler manifold reduces to that of a rigid special Kahler manifold. We extensively make use of the structure of these Calabi-Yau manifolds as K3 fibrations, which is useful to obtain the periods even before the K3 degenerates to an ALE manifold in the limit. We study various methods to calculate the periods and their properties. The development of these methods is an important step to obtain exact results from supergravity on Calabi-Yau manifolds.Comment: 79 pages, 8 figures. LaTeX; typos corrected, version to appear in Classical and Quantum Gravit
    corecore