13 research outputs found

    Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance

    Get PDF
    Varroa destructor is the most devastating parasite of the Western honeybee, Apis mellifera. In the light of the arm race opposing the host and its parasite, the population dynamics and genetic diversity of these organisms are key parameters. However, the life cycle of V. destructor is characterized by extreme inbreeding due to full sibling mating in the host brood cells. We here present an equation reflecting the evolution of inbreeding in such a clonal system, and compare our predictions with empirical data based on the analysis of seven microsatellite markers. This comparison revealed that the mites perform essentially incestuous mating in the beginning of the brood season. However, this pattern changes with the development of mite infestation. Despite the fact that the overall level of genetic diversity of the mites remained low through the season, multiple inbred lineages were identified in the mites we sampled in June. As a response to the decrease of brood availability and the increase of the parasite population in parallel in the colonies, these lineages recombined towards the end of the season as mites co-infest brood cells. Our results suggest that the ratio of the number of mite per brood cell in the colony determines the genetic structure of the populations of V. destructor. This intracolonial population dynamics has great relevance for the selection of acaricide resistance in V. destructor. If chemical treatments occur before the recombination phase, inbreeding will greatly enhance the fixation of resistance alleles at the colony level.Bayer AGhttp://www.elsevier.com/locate/meegid2018-06-30hb2017Zoology and Entomolog

    Efficacy of an imidacloprid/flumethrin collar against fleas, ticks, mites and lice on dogs

    Get PDF
    BACKGROUND: The studies reported here were conducted to ascertain the efficacy of imidacloprid/flumethrin incorporated in a slow-release matrix collar, against infestations of dogs by fleas, ticks, mites and lice. Efficacy was evaluated against the flea Ctenocephalides felis felis, the ticks Rhipicephalus sanguineus, Ixodes ricinus, Ixodes scapularis, Dermacentor reticulatus and Dermacentor variabilis, the mite Sarcoptes scabiei and the biting louse Trichodectes canis. METHODS: Groups of collar-treated dogs (n = 7–10) were infested with fleas and/or ticks at monthly intervals at least, over a period of up to 8 months. Efficacy against fleas was evaluated 24 to 48 h after treatment and 24 h after each re-infestation. Efficacy against ticks was evaluated at 48 h (acaricidal), 6 h (repellent) and 48 h (sustained) after infestation. The effect of regular shampooing or immersion in water on the efficacy of the collars was also tested. Efficacy against flea larvae was assessed by incubating blanket samples after dog contact with viable flea eggs. Effectiveness against lice and mites was evaluated after treatment of naturally infested animals. With the exception of the mites, efficacy was calculated by comparison with untreated negative control groups. RESULTS: Efficacy against fleas (24 h) generally exceeded 95%, and against flea larvae it exceeded 99% for 8 months. Sustained acaricidal (48 h) efficacy, covering a period of 8 months was 100% against I. ricinus, starting 2 days after treatment (in vivo), and 100% against I. scapularis (in vitro), above 97% against R. sanguineus, generally above 97% against D. reticulatus and above 90% for D. variabilis. Repellent (6 h) efficacy 2 days after treatment and continuing for 8 months was consistently 100% against I. ricinus, and above 90% against R. sanguineus. Regular shampooing affected efficacy against fleas and ticks to a lesser extent than regular immersion in water. The collars eliminated Trichodectes canis within 2 days and Sarcoptes scabiei within 3 months. CONCLUSION: The rapid insecticidal and acaricidal properties of the medicated collars against newly-acquired infestations of fleas and ticks and their sustained high levels of preventive efficacy have been clearly shown. Consequently they have the potential to prevent the transmission of vector-borne diseases and other conditions directly associated with infestation throughout an entire season of parasite abundance.DS, EMK, JJF and WD designed the study design and protocols and JJF and EMK carried out the studies. DS, JJF, EMK and WD and IGH compiled and analysed the data. IGH was responsible for the first draft of the manuscript, which was then substantially revised by all authors. All authors read and approved the final manuscript.These clinical studies were completely funded by Bayer Animal Health GmbH, Monheim, Germany, of which D. Stanneck (Germany) and K. Krieger are employees, and by Bayer HealthCare LLC, Animal Health (USA). ClinVet is an independent Contract Development Organisation, which was contracted to manage the conduct of a part of these studies. I.G. Horak is a long-term, contract employee of Clinvet and an Honorary Professor at the Universities of the Free State and Pretoria. The authors are sincerely grateful to all monitors, investigators and the staff of the study locations either linked to the authors or serving as independent CROs who took part in the numerous studies and ensured that the high GCP and GLP standards were adhered to.http://www.parasitesandvectors.com/content/5/1/102am2013ab201

    The synergistic action of imidacloprid and flumethrin and their release kinetics from collars applied for ectoparasite control in dogs and cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control of tick and flea burdens in dogs and cats has become essential to the control of important and emerging vector borne diseases, some of which are zoonoses. Flea worry and flea bite hypersensitivity are additionally a significant disease entity in dogs and cats. Owner compliance in maintaining the pressure of control measures has been shown to be poor. For these reasons efforts are continuously being made to develop ectoparasiticides and application methods that are safe, effective and easy to apply for pet owners. A new polymer matrix collar has recently been developed which is registered for 8 months use in cats and dogs. The basic properties of this collar have been investigated in several <it>in vitro </it>and <it>in vivo </it>studies.</p> <p>Methods</p> <p>The effects of imidacloprid, flumethrin and the combination were evaluated in vitro by means of whole cell voltage clamp measurement experiments conducted on isolated neuron cells from <it>Spodoptera frugiperda</it>. The in vitro efficacy of the two compounds and the combination against three species of ticks and their life stages and fleas were evaluated in a dry surface glass vial assay. The kinetics of the compounds over time in the collar were evaluated by the change in mass of the collar and measurement of the surface concentrations and concentrations of the actives in the collar matrix by HPLC. Hair clipped from collar treated dogs and cats, collected at various time points, was used to assess the acaricidal efficacy of the actives ex vivo.</p> <p>Results</p> <p>An <it>in vitro </it>isolated insect nerve model demonstrated the synergistic neurotoxic effects of the pyrethroid flumethrin and the neonicotinoid imidacloprid. An <it>in vitro </it>glass vial efficacy and mortality study against various life stages of the ticks <it>Ixodes ricinus, Rhipicephalus sanguineus </it>and <it>Dermacentor reticulatus </it>and against the flea (<it>Ctenocephalides felis</it>) demonstrated that the combination of these products was highly effective against these parasites. The release kinetics of these actives from a neck collar (compounded with 10% imidacloprid and 4.5% flumethrin) was extensively studied in dogs and cats under laboratory and field conditions. Acaricidal concentrations of the actives were found to be consistently released from the collar matrix for 8 months. None of the collar studies in dogs or cats were associated with any significant collar related adverse event.</p> <p>Conclusion</p> <p>Here we demonstrated the synergism between the pyrethroid flumethrin and the neonicotinoid imidacloprid, both provided in therapeutically relevant doses by a slow release collar matrix system over 8 months. This collar is therefore a convenient and safe tool for a long-term protection against ectoparasites.</p

    Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the Southeastern USA

    Get PDF
    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes

    Association of Varroa destructor females in multiply infested cells of the honeybee Apis mellifera

    No full text
    The genetic diversity of Varroa destructor (Anderson & Trueman) is limited outside its natural range due to population bottlenecks and its propensity to inbreed. In light of the arms race between V. destructor and its honeybee (Apis mellifera L.) host, any mechanism enhancing population admixture of the mite may be favored. One way that admixture can occur is when two genetically dissimilar mites coinvade a brood cell, with the progeny of the foundresses admixing. We determined the relatedness of 393 pairs of V. destructor foundresses, each pair collected from a single bee brood cell (n = five colonies). We used six microsatellites to identify the genotypes of mites coinvading a cell and calculated the frequency of pairs with different or the same genotypes. We found no deviation from random coinvasion, but the frequency of cells infested by mites with different genotypes was high. This rate of recombination, coupled with a high transmission rate of mites, homogenized the allelic pool of mites within the apiary.Table S1 Observed and expected genotype association. Matrices showing the number of mites we observed (top) and expected (bottom) for each of the 10 most prevalent genotypes combinations (G1–G10) and combinations with other genotypes (Others). F represents the overall frequency of each genotype sampled in the colonies. The F was used to calculate the expected frequencies of each genotype association and overall. Recombinant genotypes are italicized.Fig. S1 Distribution of the five main genotypes (G) among sampled Varroa destructor in the five Apis mellifera colonies. The percentage of the six main genotypes (dark to light blue, from the most frequent to the least common) and the other 68 genotypes (grouped together in white) in the each of the five sampled colonies.Bayer Animal Healthhttps://onlinelibrary.wiley.com/journal/17447917hj2020Zoology and Entomolog

    Efficacy of an imidacloprid/flumethrin collar against fleas and ticks on cats

    Get PDF
    BACKGROUND: The objectives of the studies listed here were to ascertain the therapeutic and sustained efficacy of 10% imidacloprid (w/w) and 4.5% flumethrin (w/w) incorporated in a slow-release matrix collar, against laboratory-infestations of fleas and ticks on cats. Efficacy was evaluated against the flea Ctenocephalides felis felis, and the ticks Ixodes ricinus, Amblyomma americanum and Rhipicephalus turanicus. The number of studies was so large that only a general overview can be presented in this abstract. METHODS: Preventive efficacy was evaluated by infesting groups of cats (n = 8-10) with C. felis felis and/or I. ricinus, A. americanum or R. turanicus at monthly intervals at least, for a period of up to 8 months. Efficacy against fleas was evaluated 24 to 48 h after treatment and 24 h after infestation, and against ticks at 6 h (repellent) or 48 h (acaricidal) after infestation. Efficacy against flea larvae was evaluated over a period of 8 months by incubating viable flea eggs on blanket samples after cat contact. In all cases efficacy was calculated by comparison with untreated negative control groups. RESULTS: Efficacy against fleas (24 h) generally exceeded 95% until study termination. In vitro efficacy against flea larvae exceeded 92% until Day 90 and then declined to 67% at the conclusion of the study on Day 230. Sustained acaricidal (48 h) efficacy over a period of eight months was consistently 100% against I. ricinus from Day 2 after treatment, 100% against A. americanum, except for 98.5% and 97.7% at two time-points, and between 94% and 100% against R. turanicus. From Day 2 until 8 months after treatment the repellent (6 h), efficacy was consistently 100% against I. ricinus, and between 54.8% and 85.4% against R. turanicus. CONCLUSION: The rapid insecticidal and acaricidal properties of the medicated collars against newly- acquired infestations of fleas and ticks and their sustained high levels of preventive efficacy have been clearly demonstrated. Taking into account the seasonality of fleas and ticks, the collars have the potential to prevent the transmission of vector-borne diseases and other conditions directly associated with infestation throughout the season of parasite abundance.Bayer Animal Health GmbH, Monheim, Germany and by Bayer HealthCare LLC, Animal Health (USA).http://www.parasitesandvectors.com/5/1/82ab2012ab2013 (Author correction

    Efficacy of emodepside plus praziquantel tablets (Profender tablets for dogs) against mature and immature cestode infections in dogs

    Full text link
    The efficacy of a novel flavoured tablet formulation of emodepside plus praziquantel (Profender tablets for dogs) against intestinal cestodes was investigated in four randomised, blinded placebo-controlled dose confirmation studies in dogs experimentally infected with Echinococcus granulosus or E. multilocularis and in dogs naturally infected with Dipylidium caninum or Taenia spp. The tablets were used at the minimum recommended dose of 1 mg emodepside and 5 mg praziquantel per kg body weight. The studies demonstrated 100% efficacy against mature and immature E. granulosus and E. multilocularis and mature Taenia spp. and D. caninum. Additionally, one of the studies demonstrated non-interference of emodepside with the efficacy of praziquantel against D. caninum. No side effects of the treatment were observed. It is concluded that emodepside plus praziquantel tablets are safe and effective against mature and immature stages of E. granulosus and E. multilocularis and mature stages of Taenia spp. and D. caninum
    corecore