84 research outputs found

    The Non Invasive Brain Injury Evaluation, NIBIE – A New Image Technology for Studying the Mechanical Consequences of Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) is an epidemiologically well-known disorder that ranges from minor to severe conditions (Kleiven, Peloso, von Holst, 2003). The aetiology of TBI is due to external violence and similar all over the world. About 80 % is defined as mild and in this category, most patients recover completely after a certain time, ranging from days to months

    Radial and oblique impact testing of alpine helmets onto snow surfaces

    Get PDF
    Recent studies have found that alpine helmets reduce the risk of focal injuries associated with radial impacts, which is likely due to current alpine helmet standards requiring helmets to be drop-tested on flat anvils with only linear acceleration pass criteria. There is a need to evaluate the performance of alpine helmets in more realistic impacts. The current study developed a method to assess the performance of alpine helmets for radial and oblique impacts on snow surfaces in a laboratory setting. Snow samples were collected from a groomed area of a ski slope. Radial impacts were performed as drop tests onto a stationary snow sample. Oblique impacts were performed as drop tests onto a snow sample moving horizontally. For radial impacts, snow sample collection time was found to significantly (p = 0.005) influence mean peak linear headform acceleration with an increase in ambient temperature softening the snow samples. For oblique tests, the recreational alpine sports helmet with a rotation-damping system (RDS) significantly (p = 0.002) reduced mean peak angular acceleration compared to the same helmets with no RDS by approximately 44%. The ski racing helmet also significantly (p = 0.006) reduced mean peak angular acceleration compared to the recreational alpine sports helmet with no RDS by approximately 33%, which was attributed to the smooth outer shell of the ski racing helmet. The current study helps to bridge the knowledge gap between real helmet impacts on alpine snow slopes and laboratory helmet impacts on rigid surfaces. © 2023 by the authors

    Mechanical and leaching characterisation of impact-absorbing rubberised asphalts for urban pavements

    Get PDF
    A new impact-absorbing material is being developed to protect vulnerable road users in urban areas and has been produced and tested, mechanically and environmentally in the laboratory. The main constituent of this innovative material is the rubber recycled from end-of-life tyres to foster a circular use of resources and exploit rubber’s elastic properties. The study aims to provide a complete Uniaxial Compression Test (UCT) and leaching analysis of the material to propose and optimise a mix that is mechanically sound, durable, and respectful of the environment, in view of in-situ applications. Therefore, the UCT and Dynamic Surface Leaching Test (DSLT) were carried out on rubberised asphalt specimens with different mix designs. The 64 days cumulative concentrations of leached heavy metals and trace elements from unit surface of specimens were calculated and quantified, according to the CEN/TS 16637 standard. In parallel, thanks to a specific mechanical characterisation, compressive stress–strain curves were obtained, and the relaxation and elastic modulus were evaluated. The results from the compression tests showed that the A-mixes have the best elastic and absorbing behaviour, especially those made with an SBS-modified bituminous emulsion (A4). The results from DSLT showed that the cumulative concentration of released elements, per unit surface of specimens were lower than the Dutch Soil Quality Decree (SQD) thresholds, taken as a reference. The low and early release of leachant observed for the mixtures, especially A4 as the most promising one, leave the possibility to handle the leaching with several solutions, including rubber coating treatment or water washing before their incorporation into the mix to limit and prevent their leaching while permitting very high injury reduction performances

    Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports

    Get PDF
    Head acceleration measurement sensors are now widely deployed in the field to monitor head kinematic exposure in contact sports. The wealth of impact kinematics data provides valuable, yet challenging, opportunities to study the biomechanical basis of mild traumatic brain injury (mTBI) and subconcussive kinematic exposure. Head impact kinematics are translated into brain mechanical responses through physics-based computational simulations using validated brain models to study the mechanisms of injury. First, this article reviews representative legacy and contemporary brain biomechanical models primarily used for blunt impact simulation. Then, it summarizes perspectives regarding the development and validation of these models, and discusses how simulation results can be interpreted to facilitate injury risk assessment and head acceleration exposure monitoring in the context of contact sports. Recommendations and consensus statements are presented on the use of validated brain models in conjunction with kinematic sensor data to understand the biomechanics of mTBI and subconcussion. Mainly, there is general consensus that validated brain models have strong potential to improve injury prediction and interpretation of subconcussive kinematic exposure over global head kinematics alone. Nevertheless, a major roadblock to this capability is the lack of sufficient data encompassing different sports, sex, age and other factors. The authors recommend further integration of sensor data and simulations with modern data science techniques to generate large datasets of exposures and predicted brain responses along with associated clinical findings. These efforts are anticipated to help better understand the biomechanical basis of mTBI and improve the effectiveness in monitoring kinematic exposure in contact sports for risk and injury mitigation purposes

    Development of an Open Source Framework to position and personalize Human Body Models

    Get PDF
    International audienceThe current manuscript reports on the development status of a software framework to scale (personalize) and position Human Body Models used in safety applications, i.e. the PIPER framework. The framework is both model and code agnostic and it was successfully used with Thums, GHBMC and the new PIPER scalable child model. Various transformation methods to scale or positioning were implemented in an interactive application. The software was released under the Open Source General Public License (GPL) version 2

    Analysis of a severe head injury in World Cup alpine skiing

    Get PDF
    Traumatic brain injury (TBI) is the leading cause of death in alpine skiing. It has been found that helmet use can reduce the incidence of head injuries between 15% and 60%. However, knowledge on optimal helmet performance criteria in World Cup alpine skiing is currently limited owing to the lack of biomechanical data from real crash situations. Purpose: This study aimed to estimate impact velocities in a severe TBI case in World Cup alpine skiing. Methods: Video sequences from a TBI case in World Cup alpine skiing were analyzed using a model-based image matching technique. Video sequences from four camera views were obtained in full high-definition (1080p) format. A three-dimensional model of the course was built based on accurate measurements of piste landmarks and matched to the background video footage using the animation software Poser 4. A trunk-neck-head model was used for tracking the skier's trajectory. Results: Immediately before head impact, the downward velocity component was estimated to be 8 m.s(-1). After impact, the upward velocity was 3 m.s(-1), whereas the velocity parallel to the slope surface was reduced from 33 m.s(-1) to 22 m.s(-1). The frontal plane angular velocity of the head changed from 80 radIsj1 left tilt immediately before impact to 20 rad.s(-1) right tilt immediately after impact. Conclusions: A unique combination of high-definition video footage and accurate measurements of landmarks in the slope made possible a high-quality analysis of head impact velocity in a severe TBI case. The estimates can provide crucial information on how to prevent TBI through helmet performance criteria and design

    Other Effective Area-based Conservation Measures – OECMs: Andre effektive arealbaserte bevaringstiltak - Gjennomgang av noen norske arealbaserte fiskeriforvaltningstiltak og deres bidrag til bevaring av marin natur

    Get PDF
    I 2010 vedtok partsmøtet under konvensjonen om biologisk mangfold (CBD) bevaringsmål for natur der det blant annet het at 10% av hav- og kystområder skulle bevares innen 2020. Dette målet skulle kunne nås ad to veier: gjennom marine verneområder og/eller gjennom andre effektive arealbaserte forvaltningstiltak. I 2022 oppgraderte partsmøtet denne ambisjonen til 30% bevaring, med de samme tilnærmingene til måloppnåelse. Dette er et av 23 delmål i det globale rammeverket for biologisk mangfold («naturavtalen»). Målene her er globale og er ikke rettslig bindende.Other Effective Area-based Conservation Measures – OECMs: Andre effektive arealbaserte bevaringstiltak - Gjennomgang av noen norske arealbaserte fiskeriforvaltningstiltak og deres bidrag til bevaring av marin naturpublishedVersio

    D3.8 Final version of the personalization and positioning software tool with documentation. PIPER EU Project

    Get PDF
    The aim of this report is to provide an overview of the final version of the PIPER framework and application. The software, along with its documentation, and not the report, constitutes the main part of the deliverable. The software and documentation were already distributed at the Final Workshop and online (under the Open Source license GPLv2 or later for the software, and the GNU FDL 1.3 license for the documentation). The documentation includes detailed descriptions of the framework principles, user interface, metadata, along with the modules and their parameters. It also includes application scenarios (called workflows). Information about the use of the modules is complemented by Tutorials that were developed as part of WP1 (online on the wiki) and explanatory videos were developed as part of WP4 (videos of the final workshop, now available on YouTube). The headers in the source code files (also available online) list the main contributors to the software. The report will therefore not provide details about information that is already available elsewhere but will only provide a very brief summary of the functionalities available. Some of the descriptions are excerpts of the manual
    • …
    corecore