2,412 research outputs found

    Radiation measurements in the new tandem accelerator FEL

    Full text link
    The measurements of both spontaneous and stimulated emissions of radiation in the newly configured Israeli EA-FEL are made for the first time. The radiation at the W-band was measured and characterized. The results match the predictions of our earlier theoretical modeling and calculations.Comment: 4 pages, 3 figures, FEL 2003 Conference repor

    Ab initio Derivation of Low-energy Model for Iron-Based Superconductors LaFeAsO and LaFePO

    Full text link
    Effective Hamiltonians for LaFeAsO and LaFePO are derived from the downfolding scheme based on first-principles calculations and provide insights for newly discovered superconductivity in the family of LnFeAsO1x_{1-x}Fx_x, Ln = La, Ce, Pr, Nd, Sm, and Gd. Extended Hubbard Hamiltonians for five maximally localized Wannier orbitals per Fe are constructed dominantly from five-fold degenerate iron-3dd bands. They contain parameters for effective Coulomb and exchange interactions screened by the polarization of other electrons away from the Fermi level. The onsite Coulomb interaction estimated as 2.2-3.3 eV is compared with the transfer integrals between the nearest-neighbor Fe-3dd Wannier orbitals, 0.2-0.3 eV, indicating moderately strong electron correlation. The Hund's rule coupling is found to be 0.3-0.6 eV. The derived model offers a firm basis for further studies on physics of this family of materials. The effective models for As and P compounds turn out to have very similar screened interactions with slightly narrower bandwidth for the As compound.Comment: 5 pages, 3 figures, 1 table; to appear in J. Phys. Soc. Jpn. Vol. 77 No.9: Revised version contains corrected table values and discussions of quantitative accuracy of constrained random-phase approximatio

    A new approach to aerial combat games

    Get PDF
    Application of differential game theory to aerial combat game

    Optimizing Use of Multistream Influenza Sentinel Surveillance Data

    Get PDF
    We applied time-series methods to multivariate sentinel surveillance data recorded in Hong Kong during 1998–2007. Our study demonstrates that simultaneous monitoring of multiple streams of influenza surveillance data can improve the accuracy and timeliness of alerts compared with monitoring of aggregate data or of any single stream alone

    Microscopic Theory of Magnon-Drag Thermoelectric Transport in Ferromagnetic Metals

    Full text link
    A theoretical study of the magnon-drag Peltier and Seebeck effects in ferromagnetic metals is presented. A magnon heat current is described perturbatively from the microscopic viewpoint with respect to electron--magnon interactions and the electric field. Then, the magnon-drag Peltier coefficient \Pi_\MAG is obtained as the ratio between the magnon heat current and the electric charge current. We show that \Pi_\MAG=C_\MAG T^{5/2} at a low temperature TT; that the coefficient C_\MAG is proportional to the spin polarization PP of the electric conductivity; and that P>0P>0 for C_\MAG<0, but P0P0. From experimental results for magnon-drag Peltier effects, we estimate that the strength of the electron--magnon interaction is about 0.3 eVA˚3/2\cdot\AA^{3/2} for permalloy.Comment: 3 pages, 2 figures, accepted for publication in Journal of the Physical Society of Japa

    On-site correlation in valence and core states of ferromagnetic nickel

    Full text link
    We present a method which allows to include narrow-band correlation effects into the description of both valence and core states and we apply it to the prototypical case of nickel. The results of an ab-initio band calculation are used as input mean-field eigenstates for the calculation of self-energy corrections and spectral functions according to a three-body scattering solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle spectra show a remarkable agreement with photoemission data in terms of band width, exchange splitting, satellite energy position of valence states, spin polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Theoretical Study of One-dimensional Chains of Metal Atoms in Nanotubes

    Full text link
    Using first-principles total-energy pseudopotential calculations, we have studied the properties of chains of potassium and aluminum in nanotubes. For BN tubes, there is little interaction between the metal chains and the tubes, and the conductivity of these tubes is through carriers located at the inner part of the tube. In contrast, for small radius carbon nanotubes, there are two types of interactions: charge-transfer (dominant for alkali atoms) leading to strong ionic cohesion, and hybridization (for multivalent metal atoms) resulting in a smaller cohesion. For Al-atomic chains in carbon tubes, we show that both effects contribute. New electronic properties related to these confined atomic chains of metal are analyzed.Comment: 12 pages + 3 figure

    Magnons in real materials from density-functional theory

    Full text link
    We present an implementation of the adiabatic spin-wave dynamics of Niu and Kleinman. This technique allows to decouple the spin and charge excitations of a many-electron system using a generalization of the adiabatic approximation. The only input for the spin-wave equations of motion are the energies and Berry curvatures of many-electron states describing frozen spin spirals. The latter are computed using a newly developed technique based on constrained density-functional theory, within the local spin density approximation and the pseudo-potential plane-wave method. Calculations for iron show an excellent agreement with experiments.Comment: 1 LaTeX file and 1 postscript figur
    corecore