4,101 research outputs found
Intrinsic Tunneling in Cuprates and Manganites
The most anisotropic high temperature superconductors like Bi2Sr2CaCu2O8, as
well as the recently discovered layered manganite La1.4Sr1.6Mn2O7 are layered
metallic systems where the interlayer current transport occurs via sequential
tunneling of charge carriers. As a consequence, in Bi2Sr2CaCu2O8 adjacent CuO2
double layers form an intrinsic Josephson tunnel junction while in in
La1.4Sr1.6Mn2O7 tunneling of spin polarized charge carriers between adjacent
MnO2 layers leads to an intrinsic spin valve effect. We present and discuss
interlayer transport experiments for both systems. To perform the experiments
small sized mesa structures were patterned on top of single crystals of the
above materials defining stacks of a small number of intrinsic Josephson
junctions and intrinsic spin valves, respectively.Comment: 6 pages, 8 figure
Do Tougher Licensing Provisions Limit Occupational Entry? The Case of Dentistry
The effect of licensing as a mechanism to control entry into occupations has been a neglected area of both regulation and labor market research. This study examines the role of occupational licensing for entry into dentistry, an occupation with standards that vary by state. Our research first closely replicates Freeman's previous work on labor market cobwebs by employing national data to examine purely market phenomena in the determination of training for the dental profession. We subsequently approximate the government barrier to practice in the profession by adding a weighted average state examination pass rate to the previous model. Next, we employ pooled cross-section time series analysis to explore market determinants of professional entry with state level data. Finally, these results are supplemented by measures of statutory and pass rate entry restrictiveness. Our most consistent evidence suggests that a higher state licensing failure rate deters entry into dental practice.
Collective Dynamics of Josephson Vortices in Intrinsic Josephson Junctions :Exploration of In-phase Locked Superradiant Vortex Flow States
In order to clarify the ``superradiant'' conditions for the moving Josephson
vortices to excite in-phase AC electromagnetic fields over all junctions, we
perform large scale simulations of realistic dimensions for intrinsic Josephson
junctions under the layer parallel magnetic field. Three clear step-like
structures in the I-V curve are observed above a certain high field (
in the present simulations), at which we find structural transitions in the
moving flux-line lattice. The Josephson vortex flow states are accordingly
classified into four regions (region I IV with increasing current), in
each of which the power spectrum for the electric field oscillations at the
sample edge are measured and typical snapshots for Josephson vortex
configurations are displayed. Among the four regions, especially in the region
III, an in-phase rectangular vortex lattice flow state emerges and the power
spectrum shows remarkably sharp peak structure, i.e., superradiant state.
Comparison of the simulation results with an eigenmode analysis for the
transverse propagating Josephson plasma oscillations reveals that the
resonances between Josephson vortex flow states and some of the eigenmodes are
responsible for the clear flux lattice structural transitions. Furthermore, the
theoretical analysis clarifies that the width of the superradiant state region
in the I-V characteristics enlarges with decreasing both the superconducting
and insulating layer thickness.Comment: 8 pages, Revtex, 7 figures; figure arrangements improved. no changes
in tex
Simulation of I-V Hysteresis Branches in An Intrinsic Stack of Josephson Junctions in High Superconductors
I-V characteristics of the high T superconductor
BiSrCaCO shows a strong hysteresis, producing many
branches. The origin of hysteresis jumps is studied by use of the model of
multi-layered Josephson junctions proposed by one of the authors (T. K.). The
charging effect at superconducting layers produces a coupling between the next
nearest neighbor phase-differences, which determines the structure of
hysteresis branches. It will be shown that a solution of phase motions is
understood as a combination of rotating and oscillating phase-differences, and
that, at points of hysteresis jumps, there occurs a change in the number of
rotating phase-differences. Effects of dissipation are analyzed. The
dissipation in insulating layers works to damp the phase motion itself, while
the dissipation in superconducting layers works to damp relative motions of
phase-differences. Their effects to hysteresis jumps are discussed.Comment: 18 pages, Latex, 8 figures. To be appear in Phys.Rev.B Vol.60(1999
Dynamics of semifluxons in Nb long Josephson 0-pi junctions
We propose, implement and test experimentally long Josephson 0-pi junctions
fabricated using conventional Nb-AlOx-Nb technology. We show that using a pair
of current injectors, one can create an arbitrary discontinuity of the
Josephson phase and in particular a pi-discontinuity, just like in
d-wave/s-wave or in d-wave/d-wave junctions, and study fractional Josephson
vortices which spontaneously appear. Moreover, using such junctions, we can
investigate the \emph{dynamics} of the fractional vortices -- a domain which is
not yet available for natural 0-pi-junctions due to their inherently high
damping. We observe half-integer zero-field steps which appear on the
current-voltage characteristics due to hopping of semifluxons.Comment: Fractional vortices in conventional superconductors ;-
Coupling between phonons and intrinsic Josephson oscillations in cuprate superconductors
The recently reported subgap structures observed in the current-voltage
characteristic of intrinsic Josephson junctions in the high-T_c superconductors
Tl_2Ba_2Ca_2Cu_3O_{10+\delta} and Bi_2Sr_2CaCu_2O_{8+\delta} are explained by
the coupling between c-axis phonons and Josephson oscillations. A model is
developed where c-axis lattice vibrations between adjacent superconducting
multilayers are excited by the Josephson oscillations in a resistive junction.
The voltages of the lowest structures correspond well to the frequencies of
longitudinal c-axis phonons with large oscillator strength in the two
materials, providing a new measurement technique for this quantity.Comment: 4 pages, 3 figures, revtex, aps, epsf, psfig. submitted to Physical
Review Letters, second version improved in detai
Imaging of Thermal Domains in ultrathin NbN films for Hot Electron Bolometers
We present low-temperature scanning electron microscopy (LTSEM)
investigations of superconducting microbridges made from ultrathin NbN films as
used for hot electron bolometers. LTSEM probes the thermal structure within the
microbridges under various dc current bias conditions, either via
electron-beam-induced generation of an unstable hotspot, or via the
beam-induced growth of a stable hotspot. Such measurements reveal
inhomogeneities on a micron scale, which may be due to spatial variations in
the NbN film or film-interface properties. Comparison with model calculations
for the stable hotspot regime confirm the basic features of common hot spot
models.Comment: 3 pages, 3 figure
Laser microscopy of tunneling magnetoresistance in manganite grain-boundary junctions
Using low-temperature scanning laser microscopy we directly image electric
transport in a magnetoresistive element, a manganite thin film intersected by a
grain boundary (GB). Imaging at variable temperature allows reconstruction and
comparison of the local resistance vs temperature for both, the manganite film
and the GB. Imaging at low temperature also shows that the GB switches between
different resistive states due to the formation and growth of magnetic domains
along the GB. We observe different types of domain wall growth; in most cases a
domain wall nucleates at one edge of the bridge and then proceeds towards the
other edge.Comment: 5 pages, 4 figures; submitted to Phys. Rev. Let
Phase retrapping in aφJosephson junction: onset of the butterfly effect
We investigate experimentally the retrapping of the phase in a
φ
Josephson junction upon return of the junction to the zero-voltage state. Since the Josephson energy profile
U
0
(
ψ
)
in
φ
JJ is a
2
π
periodic double-well potential with minima at
ψ
=
±
φ
mod
2
π
, the question is at which of the two minima
−
φ
or
+
φ
the phase will be trapped upon return from a finite voltage state during quasistatic decrease of the bias current (tilt of the potential). By measuring the relative population of two peaks in escape histograms, we determine the probability of phase trapping in the
±
φ
wells for different temperatures. Our experimental results agree qualitatively with theoretical predictions. In particular, we observe an onset of the butterfly effect with an oscillating probability of trapping. Unexpectedly, this probability saturates at a value different from 50% at low temperatures
Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2
Placozoa is an enigmatic phylum of simple, microscopic, marine metazoans(1,2). Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host(3-6). We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp. H2 lives in symbiosis with two intracellular bacteria. One symbiont forms an undescribed genus in the Midichloriaceae (Rickettsiales)(7,8) and has a genomic repertoire similar to that of rickettsial parasites(9,10), but does not seem to express key genes for energy parasitism. Correlative image analyses and three-dimensional electron tomography revealed that this symbiont resides in the rough endoplasmic reticulum of its host's internal fibre cells. The second symbiont belongs to the Margulisbacteria, a phylum without cultured representatives and not known to form intracellular associations(11-13). This symbiont lives in the ventral epithelial cells of Trichoplax, probably metabolizes algal lipids digested by its host and has the capacity to supplement the placozoan's nutrition. Our study shows that one of the simplest animals has evolved highly specific and intimate associations with symbiotic, intracellular bacteria and highlights that symbioses can provide access to otherwise elusive microbial dark matter
- …
