32 research outputs found

    Toward a new data standard for combined marine biological and environmental datasets - expanding OBIS beyond species occurrences

    Get PDF
    The Ocean Biogeographic Information System (OBIS) is the world's most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land.Fil: De Pooter, Daphnis. Flanders Marine Institute; BélgicaFil: Appeltans, Ward. UNESCO-IOC; BélgicaFil: Bailly, Nicolas. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Bristol, Sky. United States Geological Survey; Estados UnidosFil: Deneudt, Klaas. Flanders Marine Institute; BélgicaFil: Eliezer, Menashè. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Fujioka, Ei. University Of Duke. Nicholas School Of Environment. Duke Marine Lab; Estados UnidosFil: Giorgetti, Alessandra. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Goldstein, Philip. University of Colorado Museum of Natural History, OBIS; Estados UnidosFil: Lewis, Mirtha Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Lipizer, Marina. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Mackay, Kevin. National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Marin, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; ArgentinaFil: Moncoiffé, Gwenaëlle. British Oceanographic Data Center; Reino UnidoFil: Nikolopoulou, Stamatina. Hellenic Centre for Marine Research, MedOBIS; GreciaFil: Provoost, Pieter. UNESCO-IOC; BélgicaFil: Rauch, Shannon. Woods Hole Oceanographic Institution; Estados UnidosFil: Roubicek, Andres. CSIRO Oceans and Atmosphere; AustraliaFil: Torres, Carlos. Universidad Autonoma de Baja California Sur; MéxicoFil: van de Putte, Anton. Royal Belgian Institute for Natural Sciences; BélgicaFil: Vandepitte, Leen. Flanders Marine Institute; BélgicaFil: Vanhoorne, Bart. Flanders Marine Institute; BélgicaFil: Vinci, Mateo. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale; ItaliaFil: Wambiji, Nina. Kenya Marine and Fisheries Research Institute; KeniaFil: Watts, David. CSIRO Oceans and Atmosphere; AustraliaFil: Klein Salas, Eduardo. Universidad Simon Bolivar; VenezuelaFil: Hernandez, Francisco. Flanders Marine Institute; Bélgic

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Applications 28 (2018): 749-760, doi: 10.1002/eap.1682.The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite‐based sensors can repeatedly record the visible and near‐infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100‐m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short‐wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14‐bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3‐d repeat low‐Earth orbit could sample 30‐km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.National Center for Ecological Analysis and Synthesis (NCEAS); National Aeronautics and Space Administration (NASA) Grant Numbers: NNX16AQ34G, NNX14AR62A; National Ocean Partnership Program; NOAA US Integrated Ocean Observing System/IOOS Program Office; Bureau of Ocean and Energy Management Ecosystem Studies program (BOEM) Grant Number: MC15AC0000

    Abundancia, estructura de tamaños y distribución espacial a lo largo de la costa venezolana del pez león (Pterois volitans, Pteroinae: Scorpaenidae)

    No full text
    The recent invasion of lionfish (Pterois volitans) in the Atlantic is considered a new threat to benthic and fish communities in the Caribbean region. This species was first reported in Venezuela in 2009 at various sites. Increasing reports in the past five years suggest lionfish has expanded its range of distribution and habitats. Nevertheless, this information is mostly anecdotal and extensive surveys aimed to determine its abundance, size structure and other ecological aspects encompassing wider spatial scales are necessary to understand the actual role of this species on sub-tidal marine communities in Venezuela. We determined its density and population size structure through visual census along the Venezuelan coast. Visual censuses were made following strip transects at a depth between 5 and 20m and in daylight time, at 19 sites in five localities. Average density ranged between 7 to 55 individuals per hectare among sites. Most individuals were adults and most were found in caves, coexisting with other lionfish or with different species, while others were actively preying. The fish Pterois volitans seems to be well-established along the Venezuelan coast in densities that in some sites appear to be higher than in their Pacific native range but lower than in some invaded localities of the Atlantic. Rev. Biol. Trop. 62 (Suppl. 3): 151-158. Epub 2014 September 01. La reciente invasión del pez león (Pterois volitans) en el Atlántico se considera una nueva amenaza para bentónicos y peces de las comunidades en la región del Caribe. Esta especie fue informada por primera vez en varios sitios de Venezuela en 2009. El aumento de informes en los últimos cinco años sugiere que ha ampliado su distribución y hábitats. Sin embargo, esta información es principalmente anecdótica por lo que son necesarios estudios dirigidos a determinar su abundancia, estructura de tallas y otros aspectos ecológicos que abarquen más escalas espaciales para entender el papel real de esta especie en comunidades marinas en Venezuela. Determinamos la densidad y estructura del tamaño poblacional del pez león a través de censos visuales en la costa venezolana. Realizamos censos visuales siguiendo transectos lineales a una profundidad entre 5 y 20m durante el día, en 19 sitios de cinco localidades. La densidad media varia entre 7 y 55 individuos por hectárea entre sitios. La mayoría de los individuos eran adultos que se encontraban en cuevas, coexistiendo con otro peces león o con diferentes especies; mientras que otros estaban forrajeando activamente. El pez Pterois volitans esta bien establecido a lo largo de la costa venezolana y sus densidades en algunos sitios parecen exceder lo informado para su distribución nativa en el Pacífico pero son densidades menores que las informadas en localidades del Atlántico.

    Lionfish abundance, size structure and spatial distribution along the Venezuelan coast (Pterois volitans, Pteroinae: Scorpaenidae)

    No full text
    The recent invasion of lionfish (Pterois volitans) in the Atlantic is considered a new threat to benthic and fish communities in the Caribbean region. This species was first reported in Venezuela in 2009 at various sites. Increasing reports in the past five years suggest lionfish has expanded its range of distribution and habitats. Nevertheless, this information is mostly anecdotal and extensive surveys aimed to determine its abundance, size structure and other ecological aspects encompassing wider spatial scales are necessary to understand the actual role of this species on sub-tidal marine communities in Venezuela. We determined its density and population size structure through visual census along the Venezuelan coast. Visual censuses were made following strip transects at a depth between 5 and 20m and in daylight time, at 19 sites in five localities. Average density ranged between 7 to 55 individuals per hectare among sites. Most individuals were adults and most were found in caves, coexisting with other lionfish or with different species, while others were actively preying. The fish Pterois volitans seems to be well-established along the Venezuelan coast in densities that in some sites appear to be higher than in their Pacific native range but lower than in some invaded localities of the Atlantic

    Cooperation At Work

    No full text

    Does Team Building Work?

    No full text
    This research reports the results of a comprehensive investigation into the effectiveness of team building. The article serves to update and extend Salas, Rozell, Mullen, and Driskell\u27s (1999) team-building meta-analysis by assessing a larger database and examining a broader set of outcomes. Our study considers the impact of four specific team-building components (goal setting, interpersonal relations, problem solving, and role clarification) on cognitive, affective, process, and performance outcomes. Results (based on 60 correlations) suggest that team building has a positive moderate effect across all team outcomes. In terms of specific outcomes, team building was most strongly related to affective and process outcomes. Results are also presented on the differential effectiveness of team building based upon the team size. © 2009 SAGE Publications
    corecore