1,024 research outputs found

    STATIC FOUR-DIMENSIONAL ABELIAN BLACK HOLES IN KALUZA-KLEIN THEORY

    Full text link
    Static, four-dimensional (4-d) black holes (BH's) in (4+n4+n)-d Kaluza-Klein (KK) theory with Abelian isometry and diagonal internal metric have at most one electric (QQ) and one magnetic (PP) charges, which can either come from the same U(1)U(1)-gauge field (corresponding to BH's in effective 5-d KK theory) or from different ones (corresponding to BH's with U(1)M×U(1)EU(1)_M\times U(1)_E isometry of an effective 6-d KK theory). In the latter case, explicit non-extreme solutions have the global space-time of Schwarzschild BH's, finite temperature, and non-zero entropy. In the extreme (supersymmetric) limit the singularity becomes null, the temperature saturates the upper bound TH=1/4πQPT_H=1/4\pi\sqrt{|QP|}, and entropy is zero. A class of KK BH's with constrained charge configurations, exhibiting a continuous electric-magnetic duality, are generated by global SO(n)SO(n) transformations on the above classes of the solutions.Comment: 11 pages, 2 Postscript figures. uses RevTeX and psfig.sty (for figs) paper and figs also at ftp://dept.physics.upenn.edu/pub/Cvetic/UPR-645-

    The spectrum of the random environment and localization of noise

    Get PDF
    We consider random walk on a mildly random environment on finite transitive d- regular graphs of increasing girth. After scaling and centering, the analytic spectrum of the transition matrix converges in distribution to a Gaussian noise. An interesting phenomenon occurs at d = 2: as the limit graph changes from a regular tree to the integers, the noise becomes localized.Comment: 18 pages, 1 figur

    Schroedingers equation with gauge coupling derived from a continuity equation

    Full text link
    We consider a statistical ensemble of particles of mass m, which can be described by a probability density \rho and a probability current \vec{j} of the form \rho \nabla S/m. The continuity equation for \rho and \vec{j} implies a first differential equation for the basic variables \rho and S. We further assume that this system may be described by a linear differential equation for a complex state variable \chi. Using this assumptions and the simplest possible Ansatz \chi(\rho,S) Schroedingers equation for a particle of mass m in an external potential V(q,t) is deduced. All calculations are performed for a single spatial dimension (variable q) Using a second Ansatz \chi(\rho,S,q,t) which allows for an explict q,t-dependence of \chi, one obtains a generalized Schroedinger equation with an unusual external influence described by a time-dependent Planck constant. All other modifications of Schroeodingers equation obtained within this Ansatz may be eliminated by means of a gauge transformation. Thus, this second Ansatz may be considered as a generalized gauging procedure. Finally, making a third Ansatz, which allows for an non-unique external q,t-dependence of \chi, one obtains Schroedingers equation with electromagnetic potentials \vec{A}, \phi in the familiar gauge coupling form. A possible source of the non-uniqueness is pointed out.Comment: 25 pages, no figure

    Holomorphic Anomaly in Gauge Theories and Matrix Models

    Full text link
    We use the holomorphic anomaly equation to solve the gravitational corrections to Seiberg-Witten theory and a two-cut matrix model, which is related by the Dijkgraaf-Vafa conjecture to the topological B-model on a local Calabi-Yau manifold. In both cases we construct propagators that give a recursive solution in the genus modulo a holomorphic ambiguity. In the case of Seiberg-Witten theory the gravitational corrections can be expressed in closed form as quasimodular functions of Gamma(2). In the matrix model we fix the holomorphic ambiguity up to genus two. The latter result establishes the Dijkgraaf-Vafa conjecture at that genus and yields a new method for solving the matrix model at fixed genus in closed form in terms of generalized hypergeometric functions.Comment: 34 pages, 2 eps figures, expansion at the monopole point corrected and interpreted, and references adde

    Superconducting Transition and Phase Diagram of Single Crystal MgB2

    Get PDF
    The superconducting phase diagram of MgB2 was determined from magnetization, magneto-transport and the first single-crystal specific heat measurements. A zero-temperature in-plane coherence length of 8 nm is determined. The superconducting anisotropy increases from a value around 2 near Tc to above 4.5 at 22 K. For H||c a pronounced peak effect in the critical current occurs at the upper critical field. Evidence for a surface superconducting state is presented for H||c which might account for the wide spread in reported values of the anisotropy

    Orientifolds of K3 and Calabi-Yau Manifolds with Intersecting D-branes

    Full text link
    We investigate orientifolds of type II string theory on K3 and Calabi-Yau 3-folds with intersecting D-branes wrapping special Lagrangian cycles. We determine quite generically the chiral massless spectrum in terms of topological invariants and discuss both orbifold examples and algebraic realizations in detail. Intriguingly, the developed techniques provide an elegant way to figure out the chiral sector of orientifold models without computing any explicit string partition function. As a new example we derive a non-supersymmetric Standard-like Model from an orientifold of type IIA on the quintic Calabi-Yau 3-fold with wrapped D6-branes. In the case of supersymmetric intersecting brane models on Calabi-Yau manifolds we discuss the D-term and F-term potentials, the effective gauge couplings and the Green-Schwarz mechanism. The mirror symmetric formulation of this construction is provided within type IIB theory. We finally include a short discussion about the lift of these models from type IIB on K3 to F-theory and from type IIA on Calabi-Yau 3-folds to M-theory on G_2 manifolds.Comment: 82 pages, harvmac, 5 figures. v2: references added. v3: T^6 orientifold corrected, JHEP versio

    Two-band effects in the angular dependence of Hc2 of MgB2 single crystals

    Get PDF
    International audienceThe angular dependence of the upper critical field Hc2 of MgB2 single crystals is studied at various temperatures by means of specific-heat and transport measurements in magnetic fields up to 17T. Clear deviations from Ginzburg-Landau behavior are observed at all temperatures and are explained by two-band effects. The angular dependence and temperature dependence of the deviations are in qualitative agreement with theoretical predictions based on band-structure calculations. Quantitative agreement is obtained with an interband coupling slightly stronger than the calculated one, enabling band-structure anisotropies and interband coupling strength to be experimentally estimated. This provides a pathway to the study of disorder and doping effects in MgB2

    Hysteretic behavior of the vortex lattice at the onset of the second peak for HgBa2_2CuO4+δ_{4+\delta} superconductor

    Full text link
    By means of local Hall probe ac and dc permeability measurements we investigated the phase diagram of vortex matter for the HgBa2_2CuO4+δ_{4+\delta } superconductor in the regime near the critical temperature. The second peak line, HspH_{\rm sp}, in contrast to what is usually assumed, doesn't terminate at the critical temperature. Our local ac permeability measurements revealed pronounced hysteretic behavior and thermomagnetic history effects near the onset of the second peak, giving evidence for a phase transition of vortex matter from an ordered qausilattice state to a disordered glass

    Composite Fermion Description of Correlated Electrons in Quantum Dots: Low Zeeman Energy Limit

    Full text link
    We study the applicability of composite fermion theory to electrons in two-dimensional parabolically-confined quantum dots in a strong perpendicular magnetic field in the limit of low Zeeman energy. The non-interacting composite fermion spectrum correctly specifies the primary features of this system. Additional features are relatively small, indicating that the residual interaction between the composite fermions is weak. \footnote{Published in Phys. Rev. B {\bf 52}, 2798 (1995).}Comment: 15 pages, 7 postscript figure

    Milagrito: a TeV air-shower array

    Full text link
    Milagrito, a large, covered water-Cherenkov detector, was the world's first air-shower-particle detector sensitive to cosmic gamma rays below 1 TeV. It served as a prototype for the Milagro detector and operated from February 1997 to May 1998. This paper gives a description of Milagrito, a summary of the operating experience, and early results that demonstrate the capabilities of this technique.Comment: 38 pages including 24 figure
    corecore