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The angular dependence of the upper critical fieldHc2 of MgB2 single crystals is studied at various tem-
peratures by means of specific-heat and transport measurements in magnetic fields up to 17 T. Clear deviations
from Ginzburg–Landau behavior are observed at all temperatures and are explained by two-band effects. The
angular dependence and temperature dependence of the deviations are in qualitative agreement with theoretical
predictions based on band-structure calculations. Quantitative agreement is obtained with an interband cou-
pling slightly stronger than the calculated one, enabling band-structure anisotropies and interband coupling
strength to be experimentally estimated. This provides a pathway to the study of disorder and doping effects in
MgB2.
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The emergence of new theoretical works with close ex-
perimental connections has significantly deepened the under-
standing of the properties of magnesium diboridesMgB2d.
Despite the fact that the superconducting properties of MgB2
with its fairly simple atomic structure were just recently
discovered,1 this phonon mediateds-wave superconductor
has already been the subject of intense and numerous
studies2 due to its exotic properties arising from a complex,
disconnected, multiband Fermi surface. Band-structure cal-
culations have demonstrated that the Fermi surface is com-
posed of pairs of three-dimensionalp bands and quasi-two-
dimensional (2D) s bands.3 This effective two-band
structure has been confirmed by de Haas–van Alphen
(dHvA) measurements4 and angle-resolved photoemission
spectroscopy.5

The superconducting properties of the two sets of bands
are quite different, due to the low overlap of the orthogonal
s- and p-band wave functions. The superconducting gap
ranges from 1.5 to 3.5 meV on thep bands and from 5.5 to
8 meV on the strongly superconductings bands.6 This
double-gap nature has been verified by tunneling
experiments,7–9 heat capacity measurements,10 Raman,11 and
point contact spectroscopy.12,13

Theoretically, two-band superconductivity has a history
starting well before MgB2.

14–16 Through theoretical ad-
vances, a fairly unified picture has emerged with predictions
that can be experimentally substantiated.6,17–26 One of the
salient predictions associated with a pronounced two-band
effect is a difference between the coherence length aniso-
tropy gj=jab/jc (Refs. 19–22) and the penetration depth an-
isotropygl=lc/lab,

23,24 both of which become temperature
dependent with opposite tendencies. For MgB2, a strong de-
crease ofgj=Hc2

ab/Hc2
c from gjs0d,5 to gjsTcd<2 is found

experimentally,27–32while controversy remains about the ex-

perimental temperature dependence ofgl.31–33

In this Brief Report we present evidence of clear devia-
tions of the angular dependence ofHc2 from the anisotropic
Ginzburg–Landau(GL) description. TheHc2sT,ud transition
of MgB2 single crystals was determined from resistivity
measurements and specific heat with excellent agreement be-
tween the two. With a slight adjustment of some of the pa-
rameters supplied by band-structure calculations, good quan-
titative agreement is found between theory22 and experiment,
yielding fundamental estimates of band-structure anisotro-
pies and the interband coupling strength.

Several MgB2 crystals with typical dimensions
50–250mm were obtained through a high-pressure heat
treatment of a mixture of Mg and B in excess Mg as de-
scribed elsewhere.34 The crystals hadTc values of 34–36 K,
residual resistivity ratiossRRRd,3.5, and aHc2

c s0d<3.5 T.
Transport measurements(sampleA) were performed using
standard ac techniques at 23 Hz. For the specific-heat mea-
surements, each crystal was mounted on top of a flattened
12.7mm chromel/constantan thermocouple junction. Small
temperature oscillations of the sample were induced by ei-
ther a resistive heater wire(sampleB, Argonne and NHMFL)
or by modulating the temperature of the copper base35

(sampleC, Grenoble).
Figure 1 shows the transitions from resistivity(top) and

specific heat(bottom) as a function of angle atT=27.5 K
and T=25.0 K, respectively. The resistive transitions were
measured at a relatively high current density to suppress the
effects of surface superconductivity at the well-shaped crys-
tal surfaces, as discussed in Ref. 36. Restrictions on the cur-
rent to avoid heating from the Ohmic contacts limited the
transport measurements to temperaturesT/Tc.0.7. The
value of Hc2sud was determined through a linear extrapola-
tion of the steep drop to zero resistivity as shown by the
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dashed lines in the top panel.36 The appearance of the peak
effect just belowHc2 for some angles is evident in the figure.
The thermodynamic signature ofHc2 was defined from the
midpoint of the specific heat transitions, as illustrated in the
bottom panel. The choice of definition was checked not to be
significant. It is interesting to note that the specific heat step
height is fairly independent of the field direction. This is in
agreement with GL theory, where the step height should
scale withTsdHc/dTd2, whereHc is the (isotropic) thermo-
dynamic critical field. Possible deviations from a constant
step height arising from two-band effects are too small to be
resolved in the current data due to uncertainties in the ex-
perimental method.

Clear deviations from an anisotropic GL description are,
however, seen in the angular dependence ofHc2. In Fig. 2,
the Hc2sud curves are shown for two selected temperatures
together with corresponding fits to the effective mass de-
scription Hc2

GLsud=Hc2
ab/ scos2u+gj

2 sin2ud1/2. The relative de-
viations are fairly small at 12.1 K as compared to 25.0 K.
They are nevertheless clearly discernible at all temperatures
and are reproducible between different measuring setups,
samples, and methods. Resistive measurements by Eltsevet
al. displayed similar deviations but were not analyzed in
detail.37 Deviations were also reported at 33 K using torque
measurements.38 The latter, however, suffer from the inabil-
ity to measureHc2 along the symmetry axes. Deviations from
GL behavior have also been observed on thin films.39

The deviations from GL behavior are illuminated by plot-
ting the ratioA=fHc2sud /Hc2

GLsudg2 as a function of cos2u as
shown in Fig. 3. When the field is directed along thec axis or
within the basal plane there are no deviations, since the ex-
perimentalHc2

ab andHc2
c were used as parameters for the GL-

fit sA=1d at each temperature. The shape of the deviations
as a function of angle is similar for all temperatures,
with a maximum amplitude at aroundu=20° –30°, i.e., for
cos2u,0.9.

The maximum amplitude ofAsud is plotted as a function
of temperature in Fig. 4(top). Good agreement is found be-
tween the data on all the samples, illustrating the fundamen-
tal and consistent nature of the deviations. The amplitude is
relatively small at low temperatures and reaches a maximum
slightly belowTc. By comparing the temperature dependence
of Amax with that of gj (bottom panel) one can see that the
maximum ofAmaxsTd occurs at intermediate values ofgj.

The general experimental features ofHc2sT,ud can be ex-
cellently described by the recent theory of the angular depen-

FIG. 1. Top, resistiveHc2 transition atT=27.5 K as a function
of magnetic fieldH and angleu from the basal plane. Bottom,
specific heat signature atT=25.0 K for sampleB.

FIG. 2. Angular dependence of the upper critical field at 12.1 K
and 25.0 K. The solid lines correspond to the GL theory. Small, but
clear and consistent deviations from the anisotropic, effective-mass
description are seen.

FIG. 3. Ratio A=fHc2sud /Hc2
GLsudg2 as a function of cos2u

for the two temperatures of Fig. 2. The dashed lineA=1 corre-
sponds to the GL description with a separate anisotropy parameter
gj=Hc2

ab/Hc2
c for each temperature as illustrated in Fig. 2. Solid

curves are given by two-band theory with best-fit parameters as
discussed in the text.
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dence of dirty two-band superconductors.22 The two-band
theory requires as input(i) band anisotropiesgs andgp, (ii )
a ratio of the diffusion constants in the two bands, e.g.,
rx=Dp,x/Ds,x, and(iii ) the matrix of effective coupling con-
stantsLab=lab−mab

* , where lab are the electron-phonon
coupling constants andmab

* are the Coulomb pseudopoten-
tials (a andb are indices for thes andp bands). The theo-
retical dependencies ofAsTd and gjsTd obtained by using
coupling constants and anisotropies as supplied by band-
structure calculations18,25are illustrated by the dashed curves
in Fig. 4. It is clear that, while qualitatively similar, the the-
oretical curves are displaced closer toTc and the predicted
anisotropy is higher than the experimental one.

To find the set of parameter values that would best de-
scribe the data, we allowed the parametersgs, gp, rx, Lss,
andLpp to vary freely. The off-diagonalL-parameters were
calculated from the constraints arising from the value ofTc
(Ref. 20) and the requirement of detailed balance,
Lsp /Lps=Ns /Np, whereNa is the partial density of states.
It is useful to know thatgjs0d<gs and that the overall
change in anisotropy can be estimated asgjs0d /gjsTcd
<Î1+S12rz, where S12<LspLps / sLss−Lppd2 is the re-
duced interband coupling strength andrz=rxsgs /gpd2.22 The
optimum fit parameters are listed in Table I. The correspond-
ing fit curves, included in Figs. 3 and 4, give an excellent
account of all the data. We note that calculations14,20 using
the obtained parameters give a reasonable gap anisotropy,

Dp /Ds<0.38 and that the parameter value 1/rx<0.23 is in
good agreement with the observation of an enlarged vortex
core.26,40

The most notable change of the parameters in Table I with
respect to the band-structure results is the strong enhance-
ment of the interband coupling, as reflected by an increase of
S12 from 0.034 to 0.105. In addition, thes-band anisotropy
was found to be smaller and thep band almost isotropic. A
probable explanation for the differences in parameter values
is a slight, sample dependent variation of the band structure
as seen, for example, in detailed comparisons between dHvA
data and theoretical predictions.4 A possible reason for the
difference in interband coupling is also a theoretical overes-
timation of the off-diagonal Coulomb pseudopotentials(see
discussion in Ref. 41) resulting in too low values ofLsp and
Lps. Unfortunately, no independent, experimental probe of
the off-diagonal coupling constants is available at present.
The present theoretical analysis neglects interband scattering.
However, by evaluating the corrections to the components of
the upper critical fields arising from the inclusion of weak
interband scattering, we conclude that it is unlikely that this
scattering is responsible for differences between the calcu-
lated and experimental values(e.g., for the lower value of
gs).42

MgB2 single crystals are usually described as fairly clean,
with the s band probably in the clean limit and thep band
probably in the dirty limit.4,40,43The temperature dependence
of gj measured on crystals similar to ours has recently been
described successfully within the clean-limit formalism.21

However, these calculations require modifications of cou-
pling and band anisotropies from the predicted values similar
to those found here. To our knowledge, a clean-limit calcu-
lation of the angular dependence ofHc2 has not yet been
presented. The theoretical analysis used here should be valid
for the dirtyp band in the entire temperature range and for a
clean s band at sufficiently high temperatures, where this
band is described by GL theory. One could expect deviations
from the present two-band theory at low temperatures arising
from the Fermi surface structure of the cleans band. This
cannot be ruled out entirely, but a theoretical estimate of its
importance has, to our knowledge, not yet been presented.
Since our results show that the deviations decrease with de-
creasing temperature at low temperature, opposite to the ex-
pected single-band, clean-limit behavior, we believe that our
experiments are accurately described within the present the-

FIG. 4. Top, maximum deviations ofAsud from the GL theory
as a function of reduced temperature. The dashed curve is taken
from Ref. 22. Bottom, temperature dependence of the experimental
anisotropygj. Solid circles are taken from Ref. 29. Other symbols
are as above. The inset showsAmax as a function of anisotropy,
illustrating maximum deviations at intermediate values ofgj where
both bands contribute equally. Parameters for the theoretical curves
are given in Table I.

TABLE I. Parameters used in the theoretical computations.

Parameter Predicted valuea Experimental value

gp 0.82 1.02±0.05

gs 6.3 5.45±0.10

1/rx=Ds,x/Dp,x 0.2 0.23±0.02

sLss Lsp

Lps Lpp
d s 0.81 0.115

0.091 0.278d s0.695 0.177

0.140 0.260d
aAs predicted by band-structure calculations.L values are taken
from Ref. 25 andg values are obtained from Ref. 18. The parameter
1/rx=0.2 was taken from the experimental observations of an en-
larged vortex core(Ref. 26).
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oretical framework of two-band superconductivity. However,
clean-limit effects and strong coupling corrections may, to
some degree, alter the absolute values of the determined pa-
rameters.

In summary, we have studied the angular dependence and
temperature dependence of the upper critical field of MgB2
single crystals by means of heat capacity and transport mea-
surements. Clear two-band effects are found in bothHc2sud
and the temperature dependence of the upper critical-field
anisotropygjsTd. The experiments are well explained by the
theory,22 providing a deep understanding of the microscopic
parameters describing the system. This work thus points out

a pathway to the study of disorder and doping effects in
MgB2, with great implications for future applications.
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