49,761 research outputs found

    Stability of the proton-to-electron mass ratio

    Full text link
    We report a limit on the fractional temporal variation of the proton-to-electron mass ratio as, obtained by comparing the frequency of a rovibrational transition in SF6 with the fundamental hyperfine transition in Cs. The SF6 transition was accessed using a CO2 laser to interrogate spatial 2-photon Ramsey fringes. The atomic transition was accessed using a primary standard controlled with a Cs fountain. This result is direct and model-free

    Microscopic Conductivity of Lattice Fermions at Equilibrium - Part I: Non-Interacting Particles

    Full text link
    We consider free lattice fermions subjected to a static bounded potential and a time- and space-dependent electric field. For any bounded convex region R⊂Rd\mathcal{R}\subset \mathbb{R}^{d} (d≥1d\geq 1) of space, electric fields E\mathcal{E} within R\mathcal{R} drive currents. At leading order, uniformly with respect to the volume ∣R∣\left| \mathcal{R}\right| of R\mathcal{R} and the particular choice of the static potential, the dependency on E\mathcal{E} of the current is linear and described by a conductivity distribution. Because of the positivity of the heat production, the real part of its Fourier transform is a positive measure, named here (microscopic) conductivity measure of R\mathcal{R}, in accordance with Ohm's law in Fourier space. This finite measure is the Fourier transform of a time-correlation function of current fluctuations, i.e., the conductivity distribution satisfies Green-Kubo relations. We additionally show that this measure can also be seen as the boundary value of the Laplace-Fourier transform of a so-called quantum current viscosity. The real and imaginary parts of conductivity distributions satisfy Kramers-Kronig relations. At leading order, uniformly with respect to parameters, the heat production is the classical work performed by electric fields on the system in presence of currents. The conductivity measure is uniformly bounded with respect to parameters of the system and it is never the trivial measure 0 dν0\,\mathrm{d}\nu . Therefore, electric fields generally produce heat in such systems. In fact, the conductivity measure defines a quadratic form in the space of Schwartz functions, the Legendre-Fenchel transform of which describes the resistivity of the system. This leads to Joule's law, i.e., the heat produced by currents is proportional to the resistivity and the square of currents

    Clusters and Fluctuations at Mean-Field Critical Points and Spinodals

    Full text link
    We show that the structure of the fluctuations close to spinodals and mean-field critical points is qualitatively different than the structure close to non-mean-field critical points. This difference has important implications for many areas including the formation of glasses in supercooled liquids. In particular, the divergence of the measured static structure function in near-mean-field systems close to the glass transition is suppressed relative to the mean-field prediction in systems for which a spatial symmetry is broken.Comment: 5 pages, 1 figur

    A new model for deflagration fronts in reactive fluids

    Full text link
    We present a new way of modeling deflagration fronts in reactive fluids, the main emphasis being on turbulent thermonuclear deflagration fronts in white dwarfs undergoing a Type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows full coupling between the front geometry and the flow field. With only minor modifications, this method can also be applied to describe contact discontinuities. Two different implementations are described and their physically correct behaviour for simple testcases is shown. First results of the method applied to the concrete problems of Type Ia supernovae and chemical hydrogen combustion are briefly discussed; a more extensive analysis of our astrophysical simulations is given in (Reinecke et al. 1998, MPA Green Report 1122b).Comment: 11 pages, 13 figures, accepted by A&A, corrected and extended according to referee's comment

    Development of an integrated configuration management/flight director system for piloted STOL approaches

    Get PDF
    A system analysis method for the development of an integrated configuration management/flight director system for IFR STOL approaches is presented. Curved descending decelerating approach trajectories are considered. Considerable emphasis is placed on satisfying the pilot centered requirements (acceptable workload) as well as the usual guidance and control requirements (acceptable performance). The Augmentor Wing Jet STOL Research Aircraft was utilized to allow illustration by example, and to validate the analysis procedure via manned simulation
    • …
    corecore