8 research outputs found

    Testing Einstein-dilaton-Gauss-Bonnet gravity with the reflection spectrum of accreting black holes

    Get PDF
    Einstein-dilaton-Gauss-Bonnet gravity is a theoretically well-motivated alternative theory of gravity emerging as a low-energy four-dimensional model from heterotic string theory. Its rotating black hole solutions are known numerically and can have macroscopic deviations from the Kerr black holes of Einstein's gravity. Einstein-dilaton-Gauss-Bonnet gravity can thus be tested with observations of astrophysical black holes. In the present paper, we simulate observations of the reflection spectrum of thin accretion disks with present and future x-ray facilities to understand whether x-ray reflection spectroscopy can distinguish the black holes in Einstein-dilaton-Gauss-Bonnet gravity from those in Einstein's gravity. We find that this is definitively out of reach for present x-ray missions, but it may be achieved with the next generation of facilities

    New generalized nonspherical black hole solutions

    Get PDF
    We present numerical evidence for the existence of several types of static black hole solutions with a nonspherical event horizon topology in d6d\geq 6 spacetime dimensions. These asymptotically flat configurations are found for a specific metric ansatz and can be viewed as higher dimensional counterparts of the d=5d=5 static black rings, dirings and black Saturn. Similar to that case, they are supported against collapse by conical singularities. The issue of rotating generalizations of these solutions is also considered.Comment: 47 pages, 11 figures, some comments adde

    Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory

    Full text link
    We construct rotating black hole solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. These black holes are asymptotically flat, and possess a regular horizon of spherical topology and two equal-magnitude angular momenta associated with two distinct planes of rotation. The action and global charges of the solutions are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of Einstein-Gauss-Bonnet theory. We discuss the general properties of these black holes and study their dependence on the Gauss-Bonnet coupling constant α\alpha. We argue that most of the properties of the configurations are not affected by the higher derivative terms. For fixed α\alpha the set of black hole solutions terminates at an extremal black hole with a regular horizon, where the Hawking temperature vanishes and the angular momenta attain their extremal values. The domain of existence of regular black hole solutions is studied. The near horizon geometry of the extremal solutions is determined by employing the entropy function formalism.Comment: 25 pages, 7 figure

    Charged-rotating black holes and black strings in higher dimensional Einstein-Maxwell theory with a positive cosmological constant

    Full text link
    We present arguments for the existence of charged, rotating black holes in d=2N+1d=2N+1 dimensions, with d5d\geq 5 with a positive cosmological constant. These solutions posses both, a regular horizon and a cosmological horizon of spherical topology and have NN equal-magnitude angular momenta. They approach asymptotically the de Sitter spacetime background. The counterpart equations for d=2N+2d=2N+2 are investigated, by assuming that the fields are independant of the extra dimension yy, leading to black strings solutions. These solutions are regular at the event horizon. The asymptotic form of the metric is not the de Sitter form and exhibit a naked singularity at finite proper distance.Comment: 21 pages, 9 figure

    Non-uniform Black Strings with Schwarzschild-(Anti-)de Sitter Foliation

    Get PDF
    We present some exact non-uniform black string solutions of 5-dimensional pure Einstein gravity as well as Einstein-Maxwell-dilaton theory at arbitrary dilaton coupling. The solutions share the common property that their 4-dimensional slices are Schwarzchild-(anti-)de Sitter spacetimes. The pure gravity solution is also generalized to spacetimes of dimensions higher than 5 to get non-uniform black branes.Comment: LaTeX 14 pages, 3 eps figures. V2: version appeared in CQ

    Existence of spinning solitons in gauge field theory

    Full text link
    We study the existence of classical soliton solutions with intrinsic angular momentum in Yang-Mills-Higgs theory with a compact gauge group G\mathcal{G} in (3+1)-dimensional Minkowski space. We show that for \textit{symmetric} gauge fields the Noether charges corresponding to \textit{rigid} spatial symmetries, as the angular momentum, can be expressed in terms of \textit{surface} integrals. Using this result, we demonstrate in the case of G=SU(2)\mathcal{G}=SU(2) the nonexistence of stationary and axially symmetric spinning excitations for all known topological solitons in the one-soliton sector, that is, for 't Hooft--Polyakov monopoles, Julia-Zee dyons, sphalerons, and also vortices.Comment: 21 pages, to appear in Phys.Rev.

    Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring

    Full text link
    We argue that the Weyl coordinates and the rod-structure employed to construct static axisymmetric solutions in higher dimensional Einstein gravity can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete application of the general formalism, we present numerical evidence for the existence of static black ring solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. They approach asymptotically the Minkowski background and are supported against collapse by a conical singularity in the form of a disk. An interesting feature of these solutions is that the Gauss-Bonnet term reduces the conical excess of the static black rings. Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the static black rings exist up to a maximal value of the Gauss-Bonnet coupling constant α\alpha'. Moreover, in the limit of large ring radius, the suitably rescaled black ring maximal value of α\alpha' and the black string maximal value of α\alpha' agree.Comment: 43 pages, 14 figure

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201
    corecore