845 research outputs found
Finite-Element Simulations of Light Propagation through Circular Subwavelength Apertures
Light transmission through circular subwavelength apertures in metallic films
with surrounding nanostructures is investigated numerically. Numerical results
are obtained with a frequency-domain finite-element method. Convergence of the
obtained observables to very low levels of numerical error is demonstrated.
Very good agreement to experimental results from the literature is reached, and
the utility of the method is demonstrated in the investigation of the influence
of geometrical parameters on enhanced transmission through the apertures
Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/AlO
The magnetization and magnetic ac susceptibility, ,
of superferromagnetic systems are studied by numerical simulations. The
Cole-Cole plot, vs. , is used as a tool for classifying
magnetic systems by their dynamical behavior. The simulations of the
magnetization hysteresis and the ac susceptibility are performed with two
approaches for a driven domain wall in random media. The studies are motivated
by recent experimental results on the interacting nanoparticle system
CoFe/AlO showing superferromagnetic behavior. Its
Cole-Cole plot indicates domain wall motion dynamics similarly to a disordered
ferromagnet, including pinning and sliding motion. With our models we can
successfully reproduce the features found in the experimental Cole-Cole plots.Comment: 8 pages, 6 figure
Critical exponents at the ferromagnetic transition in tetrakis(diethylamino)ethylene-C (TDAE-C)
Critical exponents at the ferromagnetic transition were measured for the
first time in an organic ferromagnetic material tetrakis(dimethylamino)ethylene
fullerene[60] (TDAE-C). From a complete magnetization-temperature-field
data set near we determine the susceptibility and
magnetization critical exponents and respectively, and the field vs. magnetization exponent at of
. Hyperscaling is found to be violated by , suggesting that the onset of ferromagnetism can be
related to percolation of a particular contact configuration of C
molecular orientations.Comment: 5 pages, including 3 figures; to appear in Phys. Rev. Let
RF Analysis of a Sub-GHz InP-Based 1550 nm Monolithic Mode-Locked Laser Chip
We report a monolithic sub-GHz repetition rate
mode-locked laser with record low pulse-to-pulse RMS timing
jitter of 3.65 ps in the passive mode locking regime. We analyse
the optical pulse generation in passive and hybrid mode-locking
operating regimes, finding narrower RF tone linewidth in the
passive regime, attributed to the improved contact structure of
the gain sections. The noise performance is also characterized
in passive and hybrid regimes, showing RMS integrated timing
jitter of approximately 600 fs. For hybrid modelocking, the
repetition rate can be varied over a large range from 880 to 990
MHz. We observe broad pulse widths of few hundred
picoseconds attributed to the (long folded) waveguide
architecture and on-chip multimode interference mirrors. This
device subjects a stand-alone, ultra-compact, mode-locking
based clock source to realize frequency synthesizers operating
over a frequency range from sub-GHz up to approximately 15
GHz
Bioinformatics for the NuGO proof of principle study: analysis of gene expression in muscle of ApoE3*Leiden mice on a high-fat diet using PathVisio
Insulin resistance is a characteristic of type-2 diabetes and its development is associated with an increased fat consumption. Muscle is one of the tissues that becomes insulin resistant after high fat (HF) feeding. The aim of the present study is to identify processes involved in the development of HF-induced insulin resistance in muscle of ApOE3*Leiden mice by using microarrays. These mice are known to become insulin resistant on a HF diet. Differential gene expression was measured in muscle using the Affymetrix mouse plus 2.0 array. To get more insight in the processes, affected pathway analysis was performed with a new tool, PathVisio. PathVisio is a pathway editor customized with plug-ins (1) to visualize microarray data on pathways and (2) to perform statistical analysis to select pathways of interest. The present study demonstrated that with pathway analysis, using PathVisio, a large variety of processes can be investigated. The significantly regulated genes in muscle of ApOE3*Leiden mice after 12 weeks of HF feeding were involved in several biological pathways including fatty acid beta oxidation, fatty acid biosynthesis, insulin signaling, oxidative stress and inflammation
Susceptibility and Percolation in 2D Random Field Ising Magnets
The ground state structure of the two-dimensional random field Ising magnet
is studied using exact numerical calculations. First we show that the
ferromagnetism, which exists for small system sizes, vanishes with a large
excitation at a random field strength dependent length scale. This {\it
break-up length scale} scales exponentially with the squared random
field, . By adding an external field we then study the
susceptibility in the ground state. If , domains melt continuously and
the magnetization has a smooth behavior, independent of system size, and the
susceptibility decays as . We define a random field strength dependent
critical external field value , for the up and down spins to
form a percolation type of spanning cluster. The percolation transition is in
the standard short-range correlated percolation universality class. The mass of
the spanning cluster increases with decreasing and the critical
external field approaches zero for vanishing random field strength, implying
the critical field scaling (for Gaussian disorder) , where and .
Below the systems should percolate even when H=0. This implies that
even for H=0 above the domains can be fractal at low random fields, such
that the largest domain spans the system at low random field strength values
and its mass has the fractal dimension of standard percolation .
The structure of the spanning clusters is studied by defining {\it red
clusters}, in analogy to the ``red sites'' of ordinary site-percolation. The
size of red clusters defines an extra length scale, independent of .Comment: 17 pages, 28 figures, accepted for publication in Phys. Rev.
Differential effects of exposure to maternal obesity or maternal weight loss during the periconceptional period in the sheep on insulin signalling molecules in skeletal muscle of the offspring at 4 months of age.
Exposure to maternal obesity before and/or throughout pregnancy may increase the risk of obesity and insulin resistance in the offspring in childhood and adult life, therefore, resulting in its transmission into subsequent generations. We have previously shown that exposure to maternal obesity around the time of conception alone resulted in increased adiposity in female lambs. Changes in the abundance of insulin signalling molecules in skeletal muscle and adipose tissue precede the development of insulin resistance and type 2 diabetes. It is not clear, however, whether exposure to maternal obesity results in insulin resistance in her offspring as a consequence of the impact of increased adiposity on skeletal muscle or as a consequence of the programming of specific changes in the abundance of insulin signalling molecules in this tissue. We have used an embryo transfer model in the sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for one week after conception on the expression and abundance of insulin signalling molecules in muscle in the offspring. We found that exposure to maternal obesity resulted in lower muscle GLUT-4 and Ser 9 phospho-GSK3α and higher muscle GSK3α abundance in lambs when compared to lambs conceived in normally nourished ewes. Exposure to maternal weight loss in normal or obese mothers, however, resulted in lower muscle IRS1, PI3K, p110β, aPKCζ, Thr 642 phospho-AS160 and GLUT-4 abundance in the offspring. In conclusion, maternal obesity or weight loss around conception have each programmed specific changes on subsets of molecules in the insulin signalling, glucose transport and glycogen synthesis pathways in offspring. There is a need for a stronger evidence base to ensure that weight loss regimes in obese women seeking to become pregnant minimize the metabolic costs for the next generation
Macrophage Migration Inhibitory Factor Activates Hypoxia-Inducible Factor in a p53-Dependent Manner
All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately
The EMT transcription factor ZEB1 blocks osteoblastic differentiation in bone development and osteosarcoma
Osteosarcoma is an often-fatal mesenchyme-derived malignancy in children and young adults. Overexpression of EMT-transcription factors (EMT-TFs) has been associated with poor clinical outcome. Here, we demonstrated that the EMT-TF ZEB1 is able to block osteoblastic differentiation in normal bone development as well as in osteosarcoma cells. Consequently, overexpression of ZEB1 in osteosarcoma characterizes poorly differentiated, highly metastatic subgroups and its depletion induces differentiation of osteosarcoma cells. Overexpression of ZEB1 in osteosarcoma is frequently associated with silencing of the imprinted DLK-DIO3 locus, which encodes for microRNAs targeting ZEB1. Epigenetic reactivation of this locus in osteosarcoma cells reduces ZEB1 expression, induces differentiation, and sensitizes to standard treatment, thus indicating therapeutic options for ZEB1-driven osteosarcomas. (c) 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland
- …