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Susceptibility and percolation in two-dimensional random field Ising magnets

E. T. Seppa¨lä and M. J. Alava
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 22 December 2000; published 18 May 2001!

The ground-state structure of the two-dimensional random field Ising magnet is studied using exact numeri-
cal calculations. First we show that the ferromagnetism, which exists for small system sizes, vanishes with a
large excitation at a random field strength-dependent length scale. Thisbreakup length scale Lb scales expo-
nentially with the squared random field, exp(A/D2). By adding an external fieldH, we then study the suscep-
tibility in the ground state. IfL.Lb , domains melt continuously and the magnetization has a smooth behavior,
independent of system size, and the susceptibility decays asL22. We define a random field strength-dependent
critical external field value6Hc(D) for the up and down spins to form a percolation type of spanning cluster.
The percolation transition is in the standard short-range correlated percolation universality class. The mass of
the spanning cluster increases with decreasingD and the critical external field approaches zero for vanishing
random field strength, implying the critical field scaling~for Gaussian disorder! Hc;(D2Dc)

d, whereDc

51.6560.05 andd52.0560.10. BelowDc the systems should percolate even whenH50. This implies that
even forH50 aboveLb the domains can be fractal at low random fields, such that the largest domain spans
the system at low random field strength values and its mass has the fractal dimension of standard percolation
D f591/48. The structure of the spanning clusters is studied by definingred clusters, in analogy to the ‘‘red
sites’’ of ordinary site percolation. The sizes of red clusters define an extra length scale, independent ofL.

DOI: 10.1103/PhysRevE.63.066109 PACS number~s!: 05.50.1q, 75.60.Ch, 75.50.Lk, 64.60.Ak

I. INTRODUCTION

The question of the importance of quenched random-field
~RF! disorder in ferromagnets can be traced back to the pri-
mary paper by Imry and Ma@1,2# from the mid-seventies.
They argued, using energy minimization for an excitation to
the ground state, that the randomness in the fields assigned to
spins changes the lower critical dimension from the pure
case with dl51 to dl52. After that a number of field-
theoretical calculations suggested that the randomness in-
creasesdl with two to be dl53. Finally came rigorous
proofs first by Bricmont and Kupiainen@3# in 1987 that there
is a ferromagnetic phase in the three-dimensional~3D!
random-field Ising model~RFIM! and in 1989 by Aizenman
and Wehr@4# that there is no ferromagnetic phase in two-
dimensional~2D! RFIM. Thus it was established that the
lower critical dimension is two. This means that the ground
state is a paramagnet, but the problem of how to describe the
structure of the~ground state of! 2D RFIM still persists.
Some recent work concerns the scaling of the correlation
lengths @5# and there is a suggestion of a ferromagnetic
phase, but with a magnetization that is in the thermodynamic
limit below unity @6#. The point is that due to the~relevant!
disorder there are no easy arguments that would indicate,
say, how the paramagnetic ground state should be character-
ized. This is different from the thermal Ising case, which is
quite trivial in 1D.

In two-dimensional Ising magnets, in the presence of
quenched random fields, the problem of determining the
ground state~GS! becomes more difficult. Finding the true
ground state with any standard Monte Carlo method is prob-
lematic due to the complex energy landscape. Even with the
exact ground state methods, such as the one used in this
paper, the thermodynamic limit is difficult to reach, since the
finite size effects are strong. In the typical case of square
lattices, the only way to avoid having a massive domain,

which would scale with the Euclidean dimension of the sys-
tem, is to have enough interpenetrating domains of both spin
orientations. However, with decreasing strength of the ran-
domness, the ferromagnetic coupling constants between
spins start to matter, the domains become ‘‘thicker,’’ and
thus one enters an apparent ferromagnetic regime, and the
paramagnetic~PM! phase is encountered only at very large
length scales. Should there be large clusters with a fractal
~non-Euclidian! mass scaling, they nevertheless can contrib-
ute to the physics in spite of the fact that the total fraction of
spins can be negligible in the thermodynamics limit. Thus
such clusters may even be measurable in experiments or be
related to the dynamical behavior in nonequilibrium condi-
tions. Therefore, it is of interest to study the structure of the
large~est! clusters in the ground state, since it is not simply
paramagnetic as in normal Ising magnets aboveTc . The true
ground state structure also gives some insight into the phys-
ics at T.0, since the overlap between the GS and the cor-
responding finite-T state is close to unity forT small, in
contrast to the thermal chaos in spin glasses@7#.

In this paper we want to shed some light on the character
of the ground states of 2D RFIM. We have done extensive
exact ground state calculations in order to characterize how
the ferromagnetic~FM! order vanishes with increasing sys-
tem size. We have also studied the effect of the application
of an external field, that is, the susceptibility of the 2D
RFIM. Allowing for a nonzero external field makes it pos-
sible to investigate a percolation type of critical phenomenon
for the largest clusters. We propose a phase diagram in the
disorder strength and external field plane for the percolation
behavior. The presence of clusters of the size of the system,
i.e., percolation type of order, adds another correlation length
to the systems and thus makes the decay of ferromagnetic
order more complicated than at first sight.

The Hamiltonian of the random field Ising model is
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H52J(̂
i j &

SiSj2(
i

~hi1H !Si , ~1!

whereJ.0 ~in this paper we useJ51 for numerical calcu-
lations! is the coupling constant between nearest-neighbor
spinsSi andSj . We use here square lattice.H is a constant
external field, which if nonzero is assigned to all of the spins,
andhi is the random field, acting on each spinSi . We con-
sider mainly a Gaussian distribution for the random-field val-
ues

P~hi !5
1

A2pD
expF2

1

2 S hi

D D 2G , ~2!

with the disorder strength given byD, the standard deviation
of the distribution, though in some cases the bimodal distri-
bution,

P~hi !5
1

2
d~hi2D!1

1

2
d~hi1D! ~3!

is used, too. The results presented below should not be too
dependent on the actualP(h), in any case.

To find the ground-state structure of the RFIM means that
the Hamiltonian~1! is minimized, in which case the positive
ferromagnetic coupling constants prefer to have all the spins
aligned to the same direction. On the other hand, the
random-field contribution is to have the spins be parallel to
the local field, and thus has a paramagnetic effect. This com-
petition between ferromagnetic and paramagnetic effects
leads to a complicated energy landscape and finding the GS
becomes a global optimization problem. An interesting as-
pect of the RFIM is that it has an experimental realization as
a diluted antiferromagnet in a field~DAFF!. By gauge-
transforming the Hamiltonian of DAFF,

H52J(̂
i j &

SiSje ie j2B(
i

e iSi , ~4!

where the coupling constantsJ,0, e i is the occupation
probability of a spinSi , and B is now a constant external
field, one gets the Hamiltonian of RFIM~1! with H50
@8–10#. The ferromagnetic order in the RFIM corresponds to
antiferromagnetic order in the DAFF, naturally.

As background, it is of interest to review a few basic
results. Imry and Ma used a domain argument to show that
the lower critical dimensiondl52 @1#. In order to have a
domain there is an energy cost ofO(Ld21) from the domain
wall. On the other hand, the system gains energy by flipping
the domain from the fluctuations of random fields, which,
interpreted as a typical fluctuation, means that the gain is
O(Ld/2). Thus, wheneverd/2>d21, i.e., d<2, it is ener-
getically favorable for the system to break up into domains.
However, in this paper we will point out, as has been shown
in one-dimensional~1D! @11#, that theO(Ld/2) scaling can be
used only in relation to the sum of the random fields in the
‘‘first excitation,’’ but not to the droplet field energy when
the GS consists of domains of different length scales.

Grinstein and Ma@12# derived from the continuum inter-
face Hamiltonian that the roughness of the domain wall
~DW! in RFIM scales asw;D2/3L (52d)/3, which is consis-
tent withdl52. Later, Fisher@13# used the functional renor-
malization group~FRG! to obtain the roughness exponentz
5(52d)/3 and argued that due to the existence of many
metastable states the perturbative RG calculations and di-
mensional reduction fail. Another, microscopic calculation
by Binder @14# optimized the domain-wall energy in two
dimensions. The net result is a total energy gain from ran-
dom fields,DU52(D2/J)L lnL due to domain wall decora-
tions, which implies that the domain wall energyU52JL
1DU vanishes on a minimal length scale

Lb;exp@A~J/D!2#, ~5!

whereA is a constant of order unity. ForL.Lb the expec-
tation is that the system spontaneously breaks up into do-
mains. Similarly, the energy of a domain with a constant
external fieldH becomes

U/J58L12~H/J!L22~8/A!~D/J!2L ln L. ~6!

Setting U/J50 and assuming that the critical length scale
Lb,H scales asLb , without the field, i.e.,Lb,H;Lb , the criti-
cal external field becomes

Hc /J5~4/A!~D/J!2 exp@2A~J/D!221#. ~7!

Note that in this case the first two terms in Eq.~6! assume
that the domain is compact.

These results imply, together with the notion that the
ground state is paramagnetic, that the magnetization should
not as such display any ‘‘universal’’ features. The results of
this paper show that the magnetization isnot dependent on
the system size and has a smooth behavior ofm; f @H/
exp(26.5/D)# and the susceptibility vanishes with the sys-
tem size asx;L22 exp(7.3/D)g@H/exp(26.5/D)#, where
g(y.0). const, andg(y→6`);exp(20.2uyu). These im-
ply that there is a length scale, related to the rate at which
clusters ‘‘melt’’ whenH is changed from zero.

The presence of such a length scale is qualitatively similar
to the one discovered in the context of the percolation tran-
sition. It turns out that when the external field is varied, the
universality class is that of the ordinary short-range corre-
lated percolation universality class. The external field thresh-
old for spanningHc with respect to decreasing random-field
strength approaches zero external field limit from the site-
percolation limit of infinite random field strength value, sug-
gesting a behavior for Gaussian disorder ofHc;(D2Dc)

d,
whereDc51.6560.05 andd52.0560.10. Below this value
the lattice effects of site percolation are washed out, and
there is yet another length scale that characterizes the perco-
lation clusters, the size of the ‘‘red clusters’’ defined below
in analogy to the usual red or cutting sites in percolation.
Now a whole cluster is reversed due to the forced reversal of
a ‘‘seed’’ cluster, when the sample is optimized again. The
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length scale is, however, finite, indicating that the global
optimization of the ground state creates only finite spin-spin
correlations as is the case in 1D as well.

This paper is organized so that it starts by introducing in
Sec. II the exact ground state calculation technique. In Sec.
III the breaking up of ferromagnetic order is discussed, based
on a nucleation-of-droplets picture which follows from a
level crossing between a FM ground state and one with a
large droplet. The relevantLb scaling ~5! is derived from
extreme statistics. Above the breakup length scale the do-
mains have a complex structure that is briefly discussed. The
effect of an external field, in the case where the system size
is aboveLb , is studied in Sec. IV for Gaussian disorder. The
percolation aspects of the 2D RFIM are studied in detail in
Sec. V. The phase diagram for the percolation behavior as
functions of the external field and the random-field strength
is sketched and the properties of the transition are discussed.
The zero-external-field percolation probability is studied in
Sec. VI. In this section the structure of spanning clusters is
also studied using the so calledred clusters, whose scaling
and properties are discussed. Conclusions are presented in
Sec. VII.

II. NUMERICAL METHOD

For the numerical calculations the Hamiltonian~1! is
transformed into a random flow graph with two extra sites:
the source and the sink. The positive field valueshi corre-
spond to flow capacitiescit connected to the sink~t! from a
spin Si ; similarly, the negative fields withcis are connected
to the source (s), and the coupling constants 2Ji j [ci j be-
tween the spins correspond to flow capacitiesci j [cji from a
site Si to its neighboring oneSj @15#. In the case where the
external field is applied, only the local sum of fields,H
1hi , is added to a spin in the positive direction of the sum.
The graph-theoretical combinatorial optimization algorithms,
namely, maximum-flow–minimum-cut algorithms, enable us
to find the bottleneck, which restricts the amount of flow that
it is possible to get from the source to the sink by pushing the
flow through flow capacities, of such a random graph. This
bottleneck, pathP, which divides the system into two parts—
sites connected to the sink and sites connected to the
source—is the global minimum cut of the graph, and the sum
of the capacities belonging to the cut(Pci j equals the maxi-
mum flow and is smaller than of any other path cutting the
system. The value of the maximum flow gives the total mini-
mum energy of the system. The maximum flow algorithms
are proven to give the exact minimum cut of all the random
graphs, in which the capacities are positive and with a single
source and sink@16#. In physical situations, this means that
the systems are without local frustration. The algorithm was
actually used for the first time in this context by Ogielski
@17#, who showed that the 3D RFIM has a ferromagnetic
phase. The best known maximum flow method is by Ford
and Fulkerson and is called the augmenting path method
@18#. We have used a more sophisticated method called
push-and-relabel by Goldberg and Tarjan@19#, which we
have optimized for our purposes. It scales almost linearly,
O(n1.2), with the number of spins and gives the ground state

in about one minute for a million spins in a workstation.
When we have added an external field in the systems, our

system sizes are restricted toL251752 for H small but non-
zero due to the range of integer variables~for numerical rea-
sons we use a discrete representation of real fields!. When
the high precision for field values is not needed, the compu-
tations extend up to system sizesL2510002. We have used
periodic boundary conditions in all of the cases. Also, the
percolation is tested in the periodic or cylindrical way, i.e., a
cluster has to meet itself when crossing a boundary in order
to span a system.

When the red clusters are studied, Sec. VI C, we have
applied a technique that allows us to take advantage of the so
called residualgraph@20#. After the original ground state is
searched, a perturbation is applied. This means that, e.g., a
spin is forced to reverse, with a large opposite field value.
Then the ground state is searched again. This time all the
flow need not be constructed from scratch, but instead one
can utilize the final situation of the first ground state search
~the residual graph!. Only the extra amount of flow, needed
since the capacity of the large opposite field value is added,
has to be forced through the system to the sink. One also has
to subtract the flow from the original field value~retrace it
back to the source!. It is thus convenient to reverse only the
fields that originally were negative. For the positive field
values, one would have to study a mirror image of the sys-
tem (hi→2hi). Thus we have analyzed the red clusters only
from the spanning clusters of down spins, which does not
disturb the statistics, since the spin directions are symmetri-
cal. The use of the residual graph considerably reduces the
time needed to calculate the next ground state, although ap-
proximately half of the spanning clusters have to be ne-
glected. Notice that since the ground-state energy is a linear
function of the capacity of the saturated bonds~or the field of
the spins aligned along the local field!, one can compute the
‘‘break-point’’ field hb , at which a change takes place from
the original ground state to the new one. We have not paid
attention to this, however, since our main interest is in the
geometry of the red clusters. One interesting additional ques-
tion would be, what is the smallesthb and its disorder-
averaged distribution.

III. DESTRUCTION OF FERROMAGNETIC ORDER

In this section we will derive the scaling for the breakup
length scaleLb , Eq. ~5! from extreme statistics~as done in
the paper by Emig and Nattermann@21#! and confirm it with
exact ground state calculations. We also discuss the ensuing
domain structure qualitatively.

If one picks a~compact! subregion of areaa of a ferro-
magnetic 2D RF system, the energy is drawn from a Gauss-
ian distribution

P~E!5
1

A2ps
expH 2

~E2^E&!2

2s2 J , ~8!

where the variances25aD2 is due to the fluctuations of
random fields, and̂E&;a. For a system of sizeL2 we have
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Na;L2 ways of making such a subregion. The probability
that a subregion has the lowest energyE is given by

LNa
~E!5NaP~E!$12C1~E!%Na21, ~9!

whereC1(E)5*2`
E P(e)de @22#. The distributionLNa

(E) is
in fact a Gumbel distribution@23#. The average value of the
lowest energies is given by

^E0&5E
2`

`

ELNa
~E!dE, ~10!

which cannot be solved analytically. The typical value of the
lowest energy follows from anextreme scalingestimate. The
factor inside the curly brackets in Eq.~9! is close to unity if
C1 becomes small enough~for similar applications, see@24–
27#!. Thus

sNaP~^E0&!'1, ~11!

which yields,

^E0&'^E&2s$ ln~Na!%1/2, ~12!

i.e., the energy gain from the fluctuations is

^Eg&'s$ ln~Na!%1/2. ~13!

A FM system would tend to take advantage of such large
favorable energy fluctuations by reversing a domain, which
requires breaking bonds. This is assumed to have a cost of

Eb;Ja(d21)/d. ~14!

Equating Eqs.~13! and~14! yields the estimate of the param-
eter values at which the first Imry-Ma domain occurs,

A2aD$ ln~Na!%1/2;Ja(d21)/d. ~15!

It can be easily understood that the most preferable domain
is the one that maximizes the area and minimizes the bonds
to be broken, which givesa.L2/2. Figure 1 illustrates this,
as we increase~with a fixed random-field configuration and
system size! the strength of the randomness or decrease the
ferromagnetic couplings until the first domain appears. It
turns out that the droplet is of the order of the system size.
This kind of nucleation with a critical size is reminiscent of
a first order transition, and is related to a level crossing,
when either the random field strength or the system size is
varied, similarly to random elastic manifolds, when an extra
periodic potential@25# or a constant external field@26# is
applied. By substitutinga;L2 andNa;L2 in Eq. ~15!, we
get for the length scale

L;exp@A~J/D!2#, ~16!

which is, in fact,Lb as in Eq.~5!. This result, Eq.~16!, is
surprising in the sense that the extreme statistics calculation
for the formation of a domain leads to the exactly same scal-
ing as the optimization of domain wall energy on successive
scales in Binder’s argument.

Due to the extensive size of the first domainlike excita-
tion, the destruction of the ferromagnetism resembles a first
order transition. The magnetization for a certain disorder
strength and system size would be averaged over systems, in
which the excitation has and has not been formed yet, with
umu.0 andumu.1, respectively. Hence we define a simpler
measure for the break up of FM order: the probability of
finding a purely ferromagnetic system,PFM(L,D), i.e., for a
fixed random field strength and system size we calculate the
probability over several realizations that magnetizationumu
51 @28#. If the transition to the PM state were continuous,
this would not make much sense, since small fluctuations
would already causePFM(L,D).0. However, due to the
first order behavior, and to the fact that the smallest energy
needed to flip a domain causes the excitation to be large,
PFM is a good measure and has a smooth behavior. We have
checked thatumu versusPFM does not depend onL.

We have derived the breakup length scaleLb by varying
the random field strengthD from the probability of finding a
pure ferromagnetic system such asPFM(Lb ,D)50.5. The
data are shown in Fig. 2 for Gaussian and bimodal disorder
~in both casesJ51), and the exponential scaling forLb ver-
sus inverse random field strength squared is clearly seen. The
prefactors areA52.160.2 and 1.960.2 for Gaussian and
bimodal disorder, respectively. To check that the probability
PFM(L,D),1 is not due to so called stiff spins, i.e., single
spins for whichhi>4J, we next derive an extreme statistics
formula for their existence. The probability of findinghi
>4J P(hi>4J)5erfc(4/D). The extreme statistics argu-
ment,NP(hi>4J)'1, with N5Ld, gives

L1'@erfc~4/D!#21/2. ~17!

For GaussianD.0.8862 for whichLb5100 in Fig. 2,L1
.400 from Eq.~17!. L1 also grows much faster thanLb for
decreasingD, which is both easy to see from Eq.~17! and
easy to check numerically. ForD.0.6670 for whichLb

FIG. 1. An example of the ground state after the first excitation,
L252002, Gaussian disorder,D50.76. Up spins are shown in
white, and down spins in black. Note that the system has periodic
boundaries.
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5800, L1 becomes as huge as 22 300. To confirm further
that the origin of the breakup is a large domain, one can
extend the argument to small domains. The length scaleL2 at
which one is able to find a cluster of two neighboring spins
flipped, i.e.,N/2L2

2P(h11h2>6J)'1, whereh1,4J, 6J
2h1<h2<h1, becomes even greater thanL1. These small
clusters are present in large system sizes, but do not play a
role in the probability of first excitation, since the energy
minimization prefers extensive domains. It is interesting to
note that the critical droplet size is reminiscent of critical
nucleation in ordinary first-order phase transitions. It is also
worth pointing out that the reasoning for stiff spins does not
work for the bimodal distribution~since it is bounded!, and
indeed we observe, as expected, a similarLb scaling for both
the Gaussian and bimodal disorders.

When a system size is well above the breakup length
scale, the Imry-Ma argument is no longer applicable to the
structure. In Fig. 3 we depict two systems with a large
Gaussian random field strength valueD53.0 and with a

smaller oneD51.2 for a system sizeL251002. One can see,
that a system breaks into smaller and smaller domains inside
each other from the case shown in Fig. 1. The feature of
having clusters in different scales is familiar from the perco-
lation problem@29#. In fact, in both of the examples in Fig. 3
there is a domain that spans the system in the vertical direc-
tion, drawn in gray. For the stronger random field value one
can also see smaller domains of different sizes. However, the
width of the spanning cluster is greater than that in a stan-
dard site or bond occupation percolation problem. Later, in
Sec. VI B, we discuss the scaling properties of the largest
clusters in the ground state, aboveLb .

IV. MAGNETIZATION AND SUSCEPTIBILITY
WITH AN EXTERNAL FIELD

In Fig. 4 we show what happens in a system, with a sys-
tem size well aboveLb when an external fieldH is applied.
Now the clusters melt smoothly when the external field
strength is increased and a first order type of phenomenon
such as that seen as when a first Imry-Ma droplet appears in
the zero-field case is not seen here. The magnetization has a
continuous behavior, see Fig. 5~a!, where we have the mag-
netization with respect to the external field for several Gauss-
ian disorder strength values. All the magnetization values for
different system sizes lie exactly on top of each other, when
L.Lb , and as long as the statistics are good.

For smaller system sizesL,Lb one could study ‘‘ava-
lanchelike’’ behavior~see@30#!, i.e., the size distribution of
flipped domains when the magnetic field is increased. How-
ever, these are due to the first-order breakup, defined by Eq.
~7! and one should bear in mind that such behavior does not
exist in the thermodynamic limit,L→`, when the system
sizes are above the breakup length scale. ForL.Lb our re-
sults indicate that the size distribution of the flipped regions
asH is swept is not that interesting.

FIG. 2. Breakup length scaleLb vs inverse random field strength
(1/D)2 for bimodal and Gaussian disorder~filled circles and empty
squares, respectively!, calculated fromPFM(Lb)50.5.

FIG. 3. ~Color! Two examples of the ground state. Up spins in isolated domains are shown in white and down spins in black unless they
belong to the spanning cluster~gray!. The yellow spin is a seed of a red cluster that breaks up the spanning cluster. Periodic boundary
conditions are used, and the spanning is checked in the vertical direction. System sizeL251002 and random fields’ standard deviations
D53.0 ~lhs! andD51.2 ~rhs!.
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In order to find the scaling between the external field and
the random field strength, we have taken from Fig. 5~a! the
crossing points of magnetization curves with fixed magneti-
zation values at external fieldsHm for different random field
strength valuesD. The external fieldHm scales exponentially
with respect to the random field strength,

Hm;exp~26.5/D!, ~18!

see Fig. 5~b!. This is also evidence ofnonexistenceof a
critical point in D, in which case there should be a power-
law behavior if the transition was continuous, thus no PM to
FM transition is seen. The data collapse using the scaling
~18! is shown in Fig. 5~c! confirming the prediction of the
scaling. The magnetization has linear behavior with respect
to the external field for small field valuesH and exponential
tails. The exponential behavior of Eq.~18! implies that there
is a unique melting rate at which the cluster boundaries are
eroded asH increases and that the process is otherwise simi-

lar for all D. We have no analytical argument for the melting
rate@or the slope of them(H) curve#, and note that it is not,
seemingly at least, related toLb .

We have also studied the susceptibility,x;^m22^m&2&,
with respect to the external field. In Fig. 6~a! the susceptibil-
ity is shown for a fixed random field strengthD52.2 and
varying system size. The data has been collapsed with the
area of the systems,x/L22. In Fig. 6~b! we have data-
collapsed the susceptibility versus random field strength by
scaling the external field with Eq.~18! as for magnetization
and the susceptibility withx;exp(7.3/D). Again the expo-
nential behavior is a sign of nonexistence of any critical
point, due to the lack of power-law divergence at anyDc .
Although the shape of the data collapse of the susceptibility
looks almost Gaussian, it is actually not. It has a constant
value for small external field valuesH and exponential tails
for large values, as seen in Fig. 6~c!. This results straightfor-
wardly from the magnetization, sincex5]m/]H. The be-
havior of the susceptibility can be summarized as

FIG. 4. An example of the ground state when an external field is applied. System sizeL5175.Lb . Gaussian disorderD51.9. Up spins
are shown in white and down spins in black. External fieldH50.0 ~a!, 0.1 ~b!, 0.25 ~c!, and 0.5~d!.
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x;L22 exp~7.3/D!g~H/Hm!, ~19!

whereHm is taken from Eq.~18! and

g~y!;H const, y.0,

exp~20.2uyu!, y→6`.
~20!

Therefore, the fluctuations of the magnetization are associ-
ated with yet another scale, which is almost, but not quite, an
inverse of that related to the magnetization. From the suscep-
tibility one gets the magnetization correlation lengthjm ,
which has an exponential dependence on the random-field
strength. It should be noted, finally, that we have studied
here only the case with Gaussian disorder. With any other

FIG. 5. ~a! Magnetizationm vs external fieldH for system size
L251752 ~all tested system sizesL.Lb lie exactly on top of each
other!, and random-field strength valuesD51.9, 2.0, 2.2, 2.6, 3.0,
3.5, and 4.5. Each point is a disorder average over 5000 realizations
and the error bars are smaller than the symbols.~b! External field
valuesHm when the magnetization curves in~a! cross the fixed
magnetization valuesm50.25, 0.2, 0.1,20.1, 20.2, 20.25, vs
random field strength. The exp lines are guides to the eye, and their
prefactors are estimated using least-squares fit.~c! Data collapse of
~a! by scalingH with exp(26.5/D) estimated in~b!.

FIG. 6. ~a! Susceptibility, calculated as a fluctuation of the mag-
netization, multiplied by system sizeL2x5L2

Šm22^m&2
‹ vs the

external fieldH for D52.2. ~b! Scaled susceptibilityx/exp(7.3/D)
vs scaled external fieldH/exp(26.5/D) for system sizeL251752

and random field strength valuesD51.9, 2.0, 2.2, 2.6, 3.0, 3.5, and
4.5. Each point is a disorder average over 5000 realizations and the
error bars are smaller than the symbols.~c! Same as~b! but only the
positive external field values and in lin-log scale. The exp(20.2x)
line is to guide the eye.
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distribution we would expect that the prefactors in Eqs.
~18!–~20! would change.

V. PERCOLATION WITH AN EXTERNAL FIELD

Motivated by Fig. 3, where the domains resemble the per-
colation problem, we next study the percolation behavior in
the 2D random field Ising magnets with Gaussian disorder.
The usual bimodal distribution can be studied as well, but
since it is susceptible to some anomalous features we con-
centrate on the Gaussian case, which does not have these
problems. The bimodal case suffers from the fact that the
ground states are highly degenerate at fractional field
strength values. Thus there are some ambiguities defining
percolation clusters@31,32#.

When the random field strength is well above the cou-
pling constant value,D@J, the percolation can be easily
understood by considering it as an ordinary site-occupation
problem. This means that only the random field directions
are important and the coupling constants may be neglected.
The site-percolation occupation threshold probability for
square lattices ispc.0.593 @29#, i.e., well above one half.
Applied to the strong random field strength case, it means
that there must be a finite external field in order to have a
domain that spans the system. However, when the random
field strength is decreased, the coupling constants start to
contribute and in some cases a domain spans the system even
without an external field, as in Fig. 3. Hence, we propose a
phase diagram, Fig. 7. There we can take the limit 1/D50 so
that the ordinary site-percolation problem is encountered.
This is true for distributions for which one can control the
fraction of ‘‘stiff’’ spins ~i.e., hi.4J) systematically. In the
case of Gaussian disorder there will be, of course, even forD
very large, a small fraction of ‘‘soft’’ spins where this crite-
rion is not fulfilled. Thus the exact point that the percolation
line approaches in the 1/D→0 limit will depend on the dis-

FIG. 7. Phase diagram for the 2D RFIM with disorder strength
D and an applied external fieldH. The 1/D50 axis corresponds to
the standard site percolation, with percolation occupation fraction
pc50.593. Dashed lines define percolation thresholdsHc(1/D) for
up and down spins, below and above which the systems are simple
ferromagnetic. Thick arrows denote two directions in which the
percolation transition may be studied: the vertical one fixedD and
varying H, and the horizontal oneH50 and varyingD.

FIG. 8. ~a! Spanning probabilities of up spinsPup as a function
of H for D52.6 with L2P@20221752#. Data points are disorder
averages over 5000 realizations, the error bars being smaller than
the symbols. Lines are sixth-order polynomial fits.~b! Crossing
pointsHc(L) of polynomials with horizontal lines leads to the es-
timate of the criticalHc by finite-size scaling usingL21/n, n54/3.
~c! Data collapse with corresponding criticalHc50.00186
60.0008.
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tribution, but we expect that the ‘‘pc’’ is different from one
half, that is,HcÞ0. Notice that again the binary distribution
presents a problem.

When 1/D→` the percolation threshold lines start to con-
verge and theH50 line. Now two questions arise. The first
one is, what kind of a transition is the percolation here? Is it
like the ordinary short-range correlated percolation, sug-
gested by the site-percolation analogy for the strong random
field strength case, or are there extra correlations due to the
global optimization relevant here? Examples about similar
cases can be found in Ref.@33#. The second question is, do
the lines meet at finiteDc , i.e., does there exist a spanning
cluster also whenH50 and D.0? Our aim is to answer
these two questions in this section, where we study the per-
colation problem in the vertical direction in the phase dia-
gram, Fig. 7, and in the next section, where the horizontal
direction, theH50 line, is considered.

In Fig. 8~a! we have drawn the spanning probabilities of
up spinsPup with respect to the external fieldH for several
system sizesL, which are greater thanLb , for a fixed ran-
dom field strengthD52.6. The curves look rather similar to
the standard percolation. When we take the crossing points
Hc(L) of the spanning probability curves with fixed span-
ning probability values for each systems sizeL, we get an
estimate for the critical external fieldHc using finite size
scaling; see Fig. 8~b!. There we have successfully attempted
to find the value forHc using the standard short-range cor-
related 2D percolation correlation length exponentn54/3.
Using the estimatedHc50.001 86 forD52.6, we show a
data collapse ofPup versus (H2Hc)/L

21/n in Fig. 8~c!,
which confirms the estimates ofHc andn54/3 @29#. We get
similar data collapses for various other random field strength
valuesD as well. In order to further test the universality class
of the percolation transition studied here, we have also cal-
culated the order parameter of the percolation, the probabil-
ity of belonging to the up-spin spanning clusterP` . Using
the scaling analysis for the correlation length

jperc;uH2Hcu2n, ~21!

and for the order parameter, whenL,jperc,

P`~H !;~H2Hc!
b, ~22!

we get the limiting behaviors,

P`~H,L !;H ~H2Hc!
b L,jperc

L2b/n L.jperc,
~23!

and thus the scaling behavior for the order parameter be-
comes

P`~H,L !;L2b/nFF ~H2Hc!
2n

L G;L2b/n f S H2Hc

L21/n D .

~24!

We have done successful data collapses, i.e., plotted the scal-
ing function f, for variousD using the standard 2D short-
range correlated percolation exponentsb55/36 andn54/3,

of which the caseD53.0 withHc50.040 is shown in Fig. 9.
Note that the values (H2Hc)/L

21/n.0 are not shown, since
cutoffs appear, due to the fact thatP` is bounded in between
@0,1# and the nonscaledP`51 values after scaling saturate
at different levels depending on the system size.

Hence, we conclude that the percolation transition for a
fixed D versus the external fieldH is in the standard 2D
short-range correlated percolation universality class@29#.
This is confirmed by the fractal dimension of the spanning
cluster, too, as discussed below. Other exponents could also
be measured, such asg for the average sizês& of the clus-
ters, ands andt for the cluster size distribution. Note, how-
ever, that the control parameter should then be the external
field H instead of the disorder strengthD. See Ref.@34# for
an example of the cluster size distribution for a noncritical
case (H50, but uHcu@0). The other exponents should be
measurable, too, such as the fractal dimension of the back-
bone of the spanning cluster, the fractal dimension of the
chemical distance, the hull exponent, etc. In addition to the
correct control parameter, the break-up length scale has to be
considered, too. Notice that there is a slight contradiction in
the notion that the hull exponent can be measured. Namely,
both the work of Ref.@34# and studies of domain walls en-
forced with appropriate boundary conditions give no evi-
dence thereof. It seems likely that to recover the right expo-
nent ~4/3! one has to resort to studying the spanning cluster
geometry itself at the critical point withL.Lb . It is inter-
esting to note that the standard 2D percolation hull exponent
can be recovered in nonequilibrium simulations of 2D RFIM
domain walls@35#.

We have now shown that there exists a line of critical
external field valuesHc(D) for percolation. The correspond-
ing correlation lengthjperc diverges as Eq.~21! with a cor-
relation length exponentn54/3. On the other hand, it was
shown in the preceding section, that there is no critical ex-

FIG. 9. Scaled order parameter, probability of belonging to the
up-spin spanning cluster,P` /L2b/n, b55/36, n54/3 vs the scaled
external field (H2Hc)/L

21/n, for D53.0 with L2P@20221752#.
Data points are disorder averages over 5000 realizations, the error
bars being smaller than the symbols. The corresponding critical
Hc(D53.0)50.04060.001.
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ternal field value for the magnetic behavior, i.e., no PM to
FM transition, and the magnetic correlation lengthjm has an
exponential dependence onD. The percolation correlation
length jperc may cause some confusion when studying the
PM structure of the GS, since it introduces another length
scale.

To answer the question of how the percolation critical
external fieldHc(D) behaves with respect to the random
field, we have attempted a critical type of scaling using the
calculatedHc for variousD52.0, 2.2, 2.6, 3.0, and 4.5. For
smallerD, Lb becomes large andHc approaches the vicinity
of zero, being thus numerically difficult to define. We have
been able to use the Ansatz behavior of

Hc;~D2Dc!
d, ~25!

whered52.0560.10. In Fig. 10~a! we have plotted the cal-
culated D values versus the scaled critical external field

@Hc(D)#1/2.05 and it gives the estimate forDc51.6560.05.
This indicates that the percolation probability lines for up
and down spins meet atDc51.65 and forD below the criti-
cal Dc the systems always display a spanning of one of the
spin directions, even forH50. Actually one should note that
the only way that neither of the spin directions span is to
have a so called checkerboard situation, which prevents both
of the spin directions from having neighbors with the same
spin orientation. However, another scenario with an expo-
nential behavior forHc(D) also fits reasonably well. This
would suggest that there is no finiteDc . Figure 10~b! shows
a behavior ofHc;D2exp(213/D224). This can be com-
pared with Eq.~7!, where the breakup external field was
derived. Notice that the derivation was for compact domains
and the spanning clusters here are, by default, fractals. Be-
sides that, the factor 13 in front of 1/D2 is much larger than
A52.1 in the scaling form forLb . The difference implies
that theLc , at which length scale the spanning probability
vanishes, scales asLc;Lb

6 . The Lb is already an exponen-
tially large length scale for smallD, so Lc should be large
enough that one can remain below it in experiments, and thus
a system can ‘‘apparently percolate’’@36,10#.

VI. PERCOLATION AT HÄ0

To understand how the percolation transition is seen when
there is no external field and the random field strength is
changed, we study the phase diagram in Sec. VI A in the
direction of the horizontal arrow in Fig. 7. The structure of
the spanning clusters is studied in Secs. VI B and in VI C
with the help of the so calledred clusters.

A. Spanning probability

In Fig. 11~a! we have plotted the probability for spanning
of either up or down spinsP as a function of the Gaussian
random field strengthD. The probabilities are calculated up
to D530, but only the interesting part of the plot is shown.
There is a drop fromP51 to a value of aboutP50.85 atD,
which correspondsL5Lb for each system size. We have also
calculated thePup in this case and it is approximately one
half of P. For the larger random field strength values the
probabilitiesP decrease and the lines get steeper when the
system size increases. In order to see if the spanning prob-
abilities are converging towards a step function at some
threshold value, we have calculated the probabilities up to
the system sizeL2510002 and each point with 5000 realiza-
tions.

For each system sizeL we have searched the crossing
pointsDc(L) of the spanning probability curves in Fig. 11~a!
with fixed probability valuesP50.1, 0.15, 0.2, 0.25, 0.3,
0.4, and 0.5. Using finite size scaling forDc(L) of the form
Dc(L)5Dc(11C1L21/n)(11C2L21/n2) we have estimated
Dc for eachP value; see Fig. 11~b!. There we have plotted
the Dc(L) versus the scaled system sizeC1L21/n. One sees
that the different threshold values for spanning probabilities
P approach different critical random field strength values
Dc . The thresholdP ’s have been plotted with respect toDc
in Fig. 11~c!. In the ordinary percolation, this should be a

FIG. 10. ~a! For eachD the critical@Hc(D)#1/d of up-spin span-
ning, whered52.0560.10. Data followsHc;(D2Dc)

d, where
Dc51.6560.05. Details are as in Fig. 8.Hc(D) spans almost two
decades fromHc50.002860.0008 for D52.0 to Hc50.1891
60.002 for D54.5. ~b! The other scenario is shown, withHc

;D2exp(213/D224) ~see text!.
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step function, and the correlation length exponentn indepen-
dent of the criterionP. However, here also 1/n is dependent
on the criterionP and varies with respect toDc(P). We
believe that this surprising phenomenon is due to the fact
that we are approaching the part in the phase diagram Fig. 7
where the percolation lines of up and down spins are con-
verging. In terms of the two control parametersD andH, one
can think about the ‘‘percolation manifold’’: it has a line of
unstable fixed pointsHc(D). Usually H is a good control
parameter close toHc . Having D as a control parameter
seems to have the problem that one moves almost parallel to
the actual lineHc(D).

When considering the percolation probability of up or
down spins, it actually consists of probabilities of up-spin
spanningPup and down-spin spanningPdown as P5Pup

1Pdown2PupPdown. Assuming thatPup ~and Pdown, re-
spectively! has a value about one half at the critical line of
percolation at the thermodynamic limit, we getP50.75. In
standard percolation such a value is not actually universal
~and we have not confirmed it!, but depends on the boundary
conditions, etc.@37#. However, whatever the values forPup
andPdown are at the thermodynamic limit, as long as they are
below unity,P is below unity, too. This may be the reason
there is an immediate drop in Fig. 11~a! from P51 atD(Lb)
for each system size, to a value of aboutP.0.85. If we
approximate with a linear behavior theP versusDc(P) in
Fig. 11~c!, the critical value estimated in the preceding sec-
tion Dc51.6560.05, when the percolation thresholdHc50
for up-spin spanning has a value aboutP.0.7. Another in-
teresting point in Fig. 11~c! is that the 1/n is about 3/4 when

FIG. 11. ~a! Spanning probabilities of up or down spinsP as a function ofD for H50 with L2P@202210002#. Data points are disorder
averages over 5000 realizations, the error bars being smaller than the symbols. Lines are tenth-order polynomial fits.~b! Crossing points
Dc(L) of the polynomials with horizontal lines ofP50.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5 vs scaled system size. Estimates of the critical
Dc are sought by finite-size scaling usingDc(L)5Dc(11C1L21/n)(11C2L21/n2) and the data are plotted asDc(L) vs C1L21/n. ~c! Critical
random field valuesDc with respect to theP values from which they are estimated. Corresponding correlation length exponents 1/n, which
are used in~b!, are shown, too.~d! Another scenario: Critical random field valuesDc with respect to system size. Lines are least-squares fits
of form L;exp(C/Da), whereC is a free parameter, for differentP values from~a!.
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P versusDc(P) approaches zero. Thus the standard corre-
lation length exponent would be reached far enough away
from the area where the percolation threshold lines for up
and down spins touch each other.

In order to test the breakup length scale type of scaling for
the percolation behavior~5!, we have taken from Fig. 11~a!
the estimatedDc(L) for various P values and plotted the
system sizes in double-logarithm scale versus the logarithm
of the inverse of the criticalDc(L); see Fig. 11~d!. The ex-
ponent, which isa52 in Lb scaling,Lb;exp(A/Da), is now
dependent onP again. At least this does not solve the prob-
lem here, and the breakup length scale type of scaling can be
ruled out.

B. The percolation cluster

In order to see if the thickness of the spanning cluster
affects the scaling of the standard percolation, we have mea-
sured the fractal dimension of the spanning cluster whenH
50. By now unsurprisingly, the standard two-dimensional
short-range correlated percolation fractal dimensionD f
591/48 fits very well in the data, as can be seen in Fig. 12.
The least-squares fit gives a value ofD f51.9060.01. We
have also measured the sum of the random fields in the span-
ning cluster and found that the sum scales with the exponent
D f591/48, too. This is in contrast to the Imry-Ma domain
argument, where the sum should scale asLd/2. The prefactor
for the scaling of the sum of the random fields slowly ap-
proaches zero with decreasing random field strength, oppo-
site to the mass of the spanning cluster, which increases with
decreasingD.

Hence, the Imry-Ma argument defines only thefirst exci-
tation, and is irrelevant when it comes to domains when the
system has broken up into many clusters on different length
scales. Then the structure is due to a more complicated op-
timization. The domains are no longer compact and as noted

above for large enough domains the domain-wall length
should be characterized by the percolation hull exponent.

C. Red clusters

So far all the evidence points to the percolation transition
being exactly of the normal universality class. To further
investigate the nature of the clusters in the presence of the
correlations from the GS optimization, we next look at the so
called red clusters. The structure of a standard percolation
cluster can be characterized with the help of the ‘‘colored
sites’’ picture in which one assesses the role of an element in
the connectivity of the spanning cluster. This picture has also
been called thelinks-nodes-blobsmodel with dead ends@29#.
The red sites, or links and nodes, are such that removing any
single one breaks up the spanning cluster.

To compare with the original ground state, we investigate
what happens if one inverts, by fixing the local fieldhi to a

FIG. 12. Average mass of spanning clusters for bimodal field
randomnessD525/13 up to system sizeL5470. The plot shows
also the sum of the random fields of the sites belonging to the same
clusters. The 2D percolation fractal dimensionD591/48 is indi-
cated with a line.

FIG. 13. ~a! Average number of red clusters,^NRC&, as a func-
tion of system size,L2520222002, for D51.3, 1.4, 1.5, and 1.6
with H50. Here the number of realizations isN5200. The smaller
the D, the larger the amplitude of̂NRC&, since the sizes of red
clusters become larger. LineL3/4 is a guide to the eye.~b! Masses of
red clusterŝ MRC& with respect to system sizeL. ^MRC& does not
depend on the system size, as seen in the figure.
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large value opposite to the spin orientation, any spin belong-
ing to the spanning cluster. Then the new GS is found with
this change to the original problem. The effect is illustrated
in Fig. 3, the crucial difference in site percolation is that now
a whole subcluster can be reversed. The spin shown in yel-
low is the inverted seed spin in the spanning cluster, and the
spins shown in red form the rest of the red cluster, which is
flipped from the original ground state when the energy is
minimized the second time. We investigate whether or not
the original cluster retains its spanning property for each spin
or trial cluster in analogy with ordinary percolation. Those
spins that lead to a destructive~cluster! flip then definered
clusters~RC! as all the spins that reversed simultaneously.

The finite size scaling of the number of red clusters,
^NRC&, is shown in Fig. 13~a! for different field values.
^NRC& is, in practice, calculated as the number of seed spins
that cause the breaking up of the spanning cluster, since two
different seed spins may both belong to the same red clusters
without the red clusters being identical. The technique for
finding the red clusters was introduced in Sec. II and al-
though it is efficient, the systems can be studied only up to
the system sizeO(2002), since each of the spins in the span-
ning clusters has to be checked separately, because one can-
not know beforehand whether it is critical or not—this is
what we want to find out. For smaller field values, the span-
ning cluster is ‘‘thicker’’ and the red clusters get larger. One
can see from the Fig. 13~a! that ^NRC& scales withL1/n,
wheren.4/3 as in ordinary percolation, for field valuesD
<Dc , when L.Lb . The smaller the field, the larger the
amplitude as well as the average mass of red clusters^MRC&.
^MRC& is independent of the system sizeL and depends only
on the fieldD; see Fig. 13~b!.

The other elements of the spanning cluster, dead ends and
blobs, could be generalized, too. Here blobs, which are mul-
tiply connected to the rest of the spanning cluster, are such
that in order to break a spanning cluster, several seed spins
must flip simultaneously instead of a single one. Links,
nodes, and blobs form together the backbone of the spanning
cluster, and the rest of the mass of the cluster is in the dead
ends. The red cluster size scale defines the average smallest
size of any element of the spanning cluster.

VII. CONCLUSIONS

In this paper we have studied the character of the ground
state of the two-dimensional randomfield Ising magnet. We
have shown that the break-up of the ferromagnetism, when
the system size increases, can be understood with extreme
statistics. This length scale has been confirmed with exact
ground-state calculations. The change of magnetization at
the droplet excitation is naturally of ‘‘first-order’’ kind.

Above the breakup length scale we have studied the mag-
netization and susceptibility with respect to a constant exter-
nal field. The behavior of the magnetization and the suscep-
tibility are continuous and smooth and do not show any
indications of a transition or a critical point, in agreement
with the expectations of a continuously varying magnetiza-
tion aroundH50 and a paramagnetic ground state. We thus
conclude that the correct way of looking at the susceptibility

is to study it with respect to the external field and above the
breakup length scale instead of as a function of the random
field strength, in which case the first-order character of the
breakup length scale may cause problems.

However, we are able to find another critical phenomenon
in the systems, in their geometry. For square lattices, sites do
not have a spanning property in ordinary percolation, when
the occupation probability is one half. This corresponds to
the random field case with a high random field strength value
without an external field. When an external field is applied
and the random field strength decreased, a percolation tran-
sition can be seen. The transition is shown to be in the stan-
dard 2D short-range correlated percolation universality class
when studied as a function of the external field. Hence, the
correlations in the two-dimensional random field Ising mag-
nets are only of finite size. We also want to point out that in
these kinds of systems, the random field strength is a poor
control parameter and the systems should be studied with
respect to the external field, and after that mapped to the
random field strength. By doing so, we have been able to find
a critical random field strength value below which the sys-
tems are always spanning even without an external field.
When the percolation transition is studied without an exter-
nal field and by tuning the random field strength, a lot of
difficulties are encountered. This might have puzzling con-
sequences when studying the character of the ground states,
not only because of the poor control parameter, but also be-
cause the percolation correlation length may be mistaken for
the magnetization correlation length. Also note that the ‘‘true
behavior’’ is seen only for system sizes large enough (L
.Lb).

The percolation character of the ground-state structure
can be measured by the standard percolation fractal dimen-
sional scaling for the mass of the spanning domain. The ex-
istence of such a large cluster is not contrary to the paramag-
netic structure of the ground state, since the fractal
dimension is below the Euclidean dimension. In order to be
consistent with the Aizenman-Wehr argument in the zero-
external-field limit, the spins in the opposite direction from
the external field may form the spanning cluster at low ran-
dom field strength values. In fact we have found cases of
finite systems forH50, where the magnetization of the sys-
tem is opposite to the orientation of spins in the spanning
cluster. Notice that this does not imply that the critical lines
Hc(D) actually cross each other atDc continuing on the
opposite side of theH50 axis ~see Fig. 7!. By considering
the red clusters, it seems that in the TD limit the spanning
cluster should be broken up atH5e, e→0 since the field
needed to flip such a critical droplet should go to zero withL.
Also, since the sum of the fields in the spanning cluster is
shown to scale with the same fractal dimension as the mass,
we conclude that the Imry-Ma argument does not work any
more after the system has broken up in several domains. It
works only for the first domain@42#.

We have also generalized the red sites of the standard
percolation to red clusters in the percolation studied here. A
red cluster results from the energy minimization achieved by
flipping a whole cluster, although only a single spin has been
forced to be flipped, and breaks up the spanning character of
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a percolating cluster. Actually, the finite size of the red clus-
ters also indicate the presence of only short-range correla-
tions in the systems. Such a lack of long-range correlations
may explain why we can see an ‘‘accidental’’ percolation
phenomenon in a zero-temperature magnet whose physics is
governed by the disorder configuration. The normal percola-
tion universality class is closely connected to conformal in-
variance, which is most often destroyed by long-range cor-
relations or randomness@38#.

In conclusion, we would like to raise some open questions
related to the percolation behavior of the ground states of the
two-dimensional random field Ising magnets. As noted, an
interesting problem is the exact relation of the RFIM perco-
lation to conformal invariance. The percolation characteris-
tics of the ground state might be experimentally measurable
since the overlap of the ground state and finite temperature
magnetization should be close to unity for low enough tem-
peratures. The structure and relaxation of diluted antiferro-
magnets@39,40# in low external fields are suitable candi-
dates: there, one would presume it to be of relevance that
there are large-scale structures present in the equilibrium

state. In particular in coarsening, it is unclear how the even-
tual hull exponent of 4/3 would affect the dynamics. It would
be interesting to see what kind of phenomena can be seen in
the structure on triangular lattices since herepc50.5 even in
the ordinary site percolation. One open question or possible
application is the 3D RFIM. The percolation transition of the
minority spins is expected to take place along a line in the
(H,D) phase diagram as well, sincepc.0.312 for site per-
colation in the case of the cubic systems most often studied
numerically. Thus, in low fields only one of the spin orien-
tations percolates, whereas at high fields both do; see a re-
view of 3D RFIM experiments in@41#. The role of this tran-
sition is also unclear when it comes to the ferromagnet to
paramagnet phase boundary and the nature of the phase
transition.
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