505 research outputs found

    Theory of excitons in cubic III-V semiconductor GaAs, InAs and GaN quantum dots: fine structure and spin relaxation

    Full text link
    Exciton fine structures in cubic III-V semiconductor GaAs, InAs and GaN quantum dots are investigated systematically and the exciton spin relaxation in GaN quantum dots is calculated by first setting up the effective exciton Hamiltonian. The electron-hole exchange interaction Hamiltonian, which consists of the long- and short-range parts, is derived within the effective-mass approximation by taking into account the conduction, heavy- and light-hole bands, and especially the split-off band. The scheme applied in this work allows the description of excitons in both the strong and weak confinement regimes. The importance of treating the direct electron-hole Coulomb interaction unperturbatively is demonstrated. We show in our calculation that the light-hole and split-off bands are negligible when considering the exciton fine structure, even for GaN quantum dots, and the short-range exchange interaction is irrelevant when considering the optically active doublet splitting. We point out that the long-range exchange interaction, which is neglected in many previous works, contributes to the energy splitting between the bright and dark states, together with the short-range exchange interaction. Strong dependence of the optically active doublet splitting on the anisotropy of dot shape is reported. Large doublet splittings up to 600 μ\mueV, and even up to several meV for small dot size with large anisotropy, is shown in GaN quantum dots. The spin relaxation between the lowest two optically active exciton states in GaN quantum dots is calculated, showing a strong dependence on the dot anisotropy. Long exciton spin relaxation time is reported in GaN quantum dots. These findings are in good agreement with the experimental results.Comment: 22+ pages, 16 figures, several typos in the published paper are corrected in re

    Six months functional response to early psychosis intervention program best predicts outcome after three years.

    Get PDF
    Not all patients respond well to early interventions for their psychosis. The present study's goal was to evaluate whether patients' responses in the first six months of treatment in a specialised three-year programme could predict final outcomes. 206 early psychosis patients were assessed at baseline, using a large set of sociodemographic and clinical variables, and then monitored for 36 months. Among those variables, changes in their Global Assessment of Functioning (GAF) scores during the first six months were used to predict outcomes after three years. Changes in GAF scores during the first six months were the only variables that predicted every symptom of functional outcome. GAF scores were also always the first or second most important predictor for every outcome. This finding held for both high- and low-functioning patients at baseline. Predicting poor long-term outcomes after only six months should help clinicians to improve treatments

    Sonoelastography of the Common Flexor Tendon of the Elbow with Histologic Agreement: A Cadaveric Study.

    Get PDF
    Purpose To determine the correlation of the results of conventional B-mode ultrasonography (US) and compression sonoelastography with histologic results in common flexor tendons of the elbow in human cadavers. Materials and Methods Twenty-five common flexor tendons were evaluated in 16 fresh, unembalmed cadavers of 11 women with a median age of 85 years (range, 71-101 years) and five men with a median age of 78 years (range, 70-88 years). Informed consent was provided according to the last will of the donors. B-mode US results were classified as grade 1, normal tendon with homogeneous fibrillar pattern; grade 2, tendon thickening or hypoechoic areas and/or calcifications in less than 30% of the tendon; or grade 3, hypoechoic areas and/or calcifications greater than 30% of the tendon. Sonoelastographic results were grade 1, blue (hardest) to green (hard); grade 2, yellow (soft); and grade 3, red (softest). The intraclass correlation coefficient was calculated to determine agreement with histologic findings for each B-mode US, sonoelastographic, and combined B-mode US and sonoelastographic examination. Histologic results were grade 1, normal, with parallel fibrillar pattern; grade 2, mild tendinopathy, with cellular infiltration, angiogenesis, or fatty vacuoles; or grade 3, severe tendinopathy, with loss of parallel collagen structure and necrosis. Results Histologic alterations were detected in 44% (11 of 25) of biopsy specimens. Intraclass correlation with histologic results was 0.57 for B-mode US, 0.68 for sonoelastography, and 0.84 for the combination of the two approaches. Conclusion The addition of sonoelastography to B-mode US provided statistically significant improvement in correlation with histologic results compared with the use of B-mode US alone (P \u3c .02). (©) RSNA, 2016 Online supplemental material is available for this article

    Artificial 64-Residue HIV-1 Enhancer-Binding Peptide Is a Potent Inhibitor of Viral Replication in HIV-1-Infected Cells

    Get PDF
    An artificial HIV-1 enhancer-binding peptide was extended by nine consecutive arginine residues at the C-terminus and by the nuclear localization signal of SV40 large T antigen at the N-terminus. The resulting synthetic 64-residue peptide was found to bind to the two enhancers of the HIV-1 long terminal repeat, cross the plasma membrane and the nuclear envelope of human cells, and suppress the HIV-1 enhancer-controlled expression of a green fluorescent protein reporter gene. Moreover, HIV-1 replication is inhibited by this peptide in HIV-1-infected CEM-GFP cells as revealed by HIV-1 p24 ELISA and real-time RT-PCR of HIV-1 RNA. Rapid uptake of this intracellular stable and inhibitory peptide into the cells implies that this peptide may have the potential to attenuate HIV-1 replication in vivo

    Timely N-Acetyl-Cysteine and Environmental Enrichment Rescue Oxidative Stress-Induced Parvalbumin Interneuron Impairments via MMP9/RAGE Pathway: A Translational Approach for Early Intervention in Psychosis.

    Get PDF
    Research in schizophrenia (SZ) emphasizes the need for new therapeutic approaches based on antioxidant/anti-inflammatory compounds and psycho-social therapy. A hallmark of SZ is a dysfunction of parvalbumin-expressing fast-spiking interneurons (PVI), which are essential for neuronal synchrony during sensory/cognitive processing. Oxidative stress and inflammation during early brain development, as observed in SZ, affect PVI maturation. We compared the efficacy of N-acetyl-cysteine (NAC) and/or environmental enrichment (EE) provided during juvenile and/or adolescent periods in rescuing PVI impairments induced by an additional oxidative insult during childhood in a transgenic mouse model with gluthation deficit (Gclm KO), relevant for SZ. We tested whether this rescue was promoted by the inhibition of MMP9/RAGE mechanism, both in the mouse model and in early psychosis (EP) patients, enrolled in a double-blind, randomized, placebo-controlled clinical trial of NAC supplementation for 6 months. We show that a sequential combination of NAC+EE applied after an early-life oxidative insult recovers integrity and function of PVI network in adult Gclm KO, via the inhibition of MMP9/RAGE. Six-month NAC treatment in EP patients reduces plasma sRAGE in association with increased prefrontal GABA, improvement of cognition and clinical symptoms, suggesting similar neuroprotective mechanisms. The sequential combination of NAC+EE reverses long-lasting effects of an early oxidative insult on PVI/perineuronal net (PNN) through the inhibition of MMP9/RAGE mechanism. In analogy, patients vulnerable to early-life insults could benefit from a combined pharmacological and psycho-social therapy

    Swapping and entangling hyperfine coupled nuclear spin baths

    Get PDF
    We numerically study the hyperfine induced nuclear spin dynamics in a system of two coupled quantum dots in zero magnetic field. Each of the electron spins is considered to interact with an individual bath of nuclear spins via homogeneous coupling constants (all coupling coefficients being equal). In order to lower the dimension of the problem, the two baths are approximated by two single long spins. We demonstrate that the hyperfine interaction enables to utilize the nuclear baths for quantum information purposes. In particular, we show that it is possible to swap the nuclear ensembles on time scales of seconds and indicate that it might even be possible to fully entangle them. As a key result, it turns out that the larger the baths are, the more useful they become as a resource of quantum information. Interestingly, the nuclear spin dynamics strongly benefits from combining two quantum dots of different geometry to a double dot set up.Comment: 6 pages, 7 figure

    Driven coherent oscillations of a single electron spin in a quantum dot

    Full text link
    The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits.Comment: Total 25 pages. 11 pages main text, 5 figures, 9 pages supplementary materia
    corecore