10,308 research outputs found

    Glutamatergic-dopaminergic balance in the brain. Its importance in motor disorders and schizophrenia

    Get PDF
    Dopamine appears to be of less importance in the regulation of psychomotor functions than was previously thought. A central dopaminergic-glutamatergic balance may be important for both akinetic motor disorders and psychosis. In Parkinson's disease glutamate antagonists may counteract central glutamatergic hyperactivity and may be of value as anti-parkinsonian drugs. An increase of dopaminergic activity and/or a reduction of glutamatergic activity may contribute to the development of paranoid hallucinatory psychosis in schizophrenic patients and of pharmacotoxic psychosis in Parkinson's disease. Because of possibly severe side-effects of glutamatergic antagonists and agonists in the treatment of akinesia and psychosis, the development of partial glutamate agonists/antagonists could be an alternative strategy capable of producing antipsychotic or anti-kinetic effects with only mild adverse reaction

    Storage by trapping and spatial staggering of multiple interacting solitons in Λ\Lambda-type media

    Get PDF
    In this paper we investigate the properties of self induced transparency (SIT) solitons, propagating in a Λ\Lambda-type medium. It was found that the interaction between SIT solitons can lead to trapping with their phase preserved in the ground state coherence of the medium. These phases can be altered in a systematic way by the application of appropriate light fields, such as additional SIT solitons. Furthermore, multiple independent SIT solitons can be made to propagate as bi-solitons through their mutual interaction with a separate light field. Finally, we demonstrate that control of the SIT soliton phase can be used to implement an optical exclusive-or gate.Comment: 7 pages, 7 figure

    A gain-coefficient switched Alexandrite laser

    Get PDF
    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.Comment: 8 pages, 5 figure

    Microscopic theory for interface fluctuations in binary liquid mixtures

    Full text link
    Thermally excited capillary waves at fluid interfaces in binary liquid mixtures exhibit simultaneously both density and composition fluctuations. Based on a density functional theory for inhomogeneous binary liquid mixtures we derive an effective wavelength dependent Hamiltonian for fluid interfaces in these systems beyond the standard capillary-wave model. Explicit expressions are obtained for the surface tension, the bending rigidities, and the coupling constants of compositional capillary waves in terms of the profiles of the two number densities characterizing the mixture. These results lead to predictions for grazing-incidence x-ray scattering experiments at such interfaces.Comment: 23 pages, 11 figure

    Local orientations of fluctuating fluid interfaces

    Full text link
    Thermal fluctuations cause the local normal vectors of fluid interfaces to deviate from the vertical direction defined by the flat mean interface position. This leads to a nonzero mean value of the corresponding polar tilt angle which renders a characterization of the thermal state of an interface. Based on the concept of an effective interface Hamiltonian we determine the variances of the local interface position and of its lateral derivatives. This leads to the probability distribution functions for the metric of the interface and for the tilt angle which allows us to calculate its mean value and its mean square deviation. We compare the temperature dependences of these quantities as predicted by the simple capillary wave model, by an improved phenomenological model, and by the microscopic effective interface Hamiltonian derived from density functional theory. The mean tilt angle discriminates clearly between these theoretical approaches and emphasizes the importance of the variation of the surface tension at small wave lengths. Also the tilt angle two-point correlation function is determined which renders an additional structural characterization of interfacial fluctuations. Various experimental accesses to measure the local orientational fluctuations are discussed.Comment: 29 pages, 12 figure

    Programmable two-photon quantum interference in 10310^3 channels in opaque scattering media

    Get PDF
    We investigate two-photon quantum interference in an opaque scattering medium that intrinsically supports 10610^6 transmission channels. By adaptive spatial phase-modulation of the incident wavefronts, the photons are directed at targeted speckle spots or output channels. From 10310^3 experimentally available coupled channels, we select two channels and enhance their transmission, to realize the equivalent of a fully programmable 2Ă—22\times2 beam splitter. By sending pairs of single photons from a parametric down-conversion source through the opaque scattering medium, we observe two-photon quantum interference. The programmed beam splitter need not fulfill energy conservation over the two selected output channels and hence could be non-unitary. Consequently, we have the freedom to tune the quantum interference from bunching (Hong-Ou-Mandel-like) to antibunching. Our results establish opaque scattering media as a platform for high-dimensional quantum interference that is notably relevant for boson sampling and physical-key-based authentication

    Production of Neutral Pions and Eta-mesons in pp Collisions Measured with ALICE

    Full text link
    Invariant cross sections for neutral pions and eta mesons in pp collisions at sqrt(s) = 0.9, 2.76, and 7 TeV were measured by the ALICE detector at the Large Hadron Collider. Next-to-leading order (NLO) perturbative QCD calculations describe the pi0 and eta spectra at 0.9 TeV, but overestimate the measured cross sections at 2.76 TeV and 7 TeV. The measured eta/pi0 ratio is consistent with mT scaling at 2.76 TeV. At 7 TeV indications for a violation of mT scaling were found.Comment: 4 pages, 2 figures, to appear in the proceedings of the XXII International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter 2011, Annec

    Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study

    Full text link
    The optical birefringence of liquid n-hexane condensed in an array of parallel silica channels of 7nm diameter and 400 micrometer length is studied as a function of filling of the channels via the vapor phase. By an analysis with the generalized Bruggeman effective medium equation we demonstrate that such measurements are insensitive to the detailed geometrical (positional) arrangement of the adsorbed liquid inside the channels. However, this technique is particularly suitable to search for any optical anisotropies and thus collective orientational order as a function of channel filling. Nevertheless, no hints for such anisotropies are found in liquid n-hexane. The n-hexane molecules in the silica nanochannels are totally orientationally disordered in all condensation regimes, in particular in the film growth as well as in the the capillary condensed regime. Thus, the peculiar molecular arrangement found upon freezing of liquid n-hexane in nanochannel-confinement, where the molecules are collectively aligned perpendicularly to the channels' long axes, does not originate in any pre-alignment effects in the nanoconfined liquid due to capillary nematization.Comment: 7 pages, 5 figure

    An S-shaped outflow from IRAS 03256+3055 in NGC 1333

    Full text link
    The IRAS source 03256+3055 in the NGC 1333 star forming region is associated with extended sub-millimeter emission of complex morphology, showing multiple clumps. One of these is found to coincide with the driving source of a bipolar jet of S-shaped morphology seen in the emission lines of H_alpha and [SII] as well as in the H2 emission lines in the K-band. Detailed images of the driving source at the wavelengths of H_alpha and [SII] and in the I, J, H, and K bands as well as a K-band spectrum and polarimetry are discussed. The near-infrared morphology is characterized by a combination of line emission from the jet and scattered light from a source with a steep continuum spectrum. The morphology and proper motion of the jet are discussed in the context of a binary system with a precessing disk. We conclude that the molecular core associated with IRAS 03256+3055 consists of several clumps, only one of which shows evidence of recent star formation at optical and near-infrared wavelengths.We also briefly discuss a second, newly found near-infrared source associated with a compact sub-millimeter continuum source near IRAS 03256+3055, and conclude that this source may be physically unrelated the cluster of molecular clumps.Comment: 25 pages, including 5 figures. Accepted for publication in The Astronomical Journa

    Stability of bubble nuclei through Shell-Effects

    Get PDF
    We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. Estimates demonstrate that the calculated shell effects for certain magic numbers of constituents are probably large enough to produce stability against fission, alpha-, and beta-decay. No bubble solutions are found for mass number A < 450.Comment: 9 pages and 9 figures in the eps format include
    • …
    corecore