44 research outputs found

    Klimagasemission im Futterbau: Vergleich von leguminosenbasierten und intensiv stickstoffgedĂŒngten GrĂŒnlandbestĂ€nden

    Get PDF
    Aim of the presented study was the comparison of the specific emissions of CO2 equivalents of a legume based and a mineral N fertilised grassland considering the N2O emissions caused by N fertilisation and soil compaction. The field trial was set up on the experimental station “Hohenschulen” in northern Germany with the factors soil compaction, N fertilisation and experimental year. The N2O emissions were affected by an interaction of soil compaction and N fertilisation, especially under moist spring conditions. The specific CO2-equivalent emission per unit energy yield was 67 % higher for the mineral N-fertilised grassland compared to the legume based grassland

    Mechanisms of Phosphorous Uptake Efficiency of Safflower and Sunflower Grown in Different Soils

    Get PDF
    Plant species vary in their phosphorous (P) use efficiency under suboptimal P supplies using different strategies, but the mechanisms are not clearly documented for some alternative plant species. Safflower was considered as low input oil crop, but its P uptake efficiency mechanism was not fully investigated. Therefore P uptake efficiency of safflower was studied as compared to sunflower under semi-controlled conditions in sandy and loamy soils. Both species responded strongly to increasing P supplies in both soils and performed better in loamy soil. Both species had similar agronomic P efficiency in both soils, indicated by similar external P requirement under P-deficient conditions. Under P deficiency, safflower had less relative shoot and root production when they were grown in sandy soils and the opposite was found in terms of loamy soil. Safflower had the disadvantage of less root length and root shoot ratio in both soils under low and high P supplies but had the advantage of higher specific root density, less root radius, and slower shoot growth rate. Under P deficiency in both soil types, both species responded similarly in terms of P influx, depleting P from soil solution and P concentration in shoots. Under high P supply, P influx and P concentration in shoots was less in safflower in both soil types. Safflower was characterized by higher shoot demand on roots for P under low and high P supplies in both soil types. Therefore the cause of high root demand on P in safflower roots at low and high P supplies stems from the low root shoot ratio of safflower at both P supplies, low P concentration and low P influx of safflower at high P supplies not because of higher shoot growth rate of safflower at low and high P supplies. Therefore using different measures of utilization efficiency parameters to differentiate plant species and genotypes to superior and inferior could be in some cases misleading.Financial support for this study was obtained from the German Academic Exchange Service (DAAD), through a Re-invitation Programme for Former Scholarship Holders (A/12/08202 and 50068612), the Palestinian funding program for research and training “ZAMALAH”, and the Dutch EP-NUFFIC through NICHE-233 project. Technical support by Mrs. S. Koch in department of plant nutrition and yield physiology, George-August University, Goettingen, Germany for her generous help in plant and soil samples analyses is gratefully acknowledged

    Potential denitrification stimulated by water-soluble organic carbon from plant residues during initial decomposition

    Get PDF
    Denitrification usually takes place under anoxic conditions and over short periods of time, and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions associated with plant residues have mainly been explained by differences in their decomposability. A factor rarely considered so far is water-extractable organic matter (WEOM) released to the soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, 13C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentrations of organic carbon (OC) and organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 h at 20 °C in the dark under anoxic conditions; KNO3 was added to ensure unlimited nitrate supply. Evolving N2O and CO2 were analyzed by gas chromatography, and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases, as well as the molar (N2O + N2)–N/CO2–C ratio, was directly related to the water-extractable OC (WEOC) content of the plant residues, and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratio of the plant residues. Incubation of OM solutions revealed that the molar (N2O + N2)–N/CO2–C ratio and share of N2O are influenced by the WEOM's chemical composition. In conclusion, our results emphasize the potential of WEOM in largely undecomposed plant residues to support short-term denitrification activity in a typical ˈhot spot–hot momentˈ situation

    N-Umsatz und Spurengasemissionen typischer Biomassefruchtfolgen zur Biogaserzeugung in Norddeutschland

    Get PDF
    Im Rahmen des Verbundprojektes Biogas-Expert an der CAU-Kiel wurden an zwei Standorten Schleswig-Holsteins veschiedene Fruchtfolgen zur Bereitstellung von Biogassubstraten unter Verwendung von BiogasgĂŒllen als N-DĂŒnger durchgefĂŒhrt. Maismonokultur wies die höchsten TrockenmasseertrĂ€ge auf, wobei keine signifikanten Unterschiede in den ErtrĂ€gen zwischen BiogasgĂ€rresten, organischen N-DĂŒngern und mineralischen DĂŒngern ermittelt wurden. WĂ€hrend in Bezug auf die N-DĂŒngeform bei N2O- und Nitratauswaschungsverlusten kein Einfluss der N-Form auf die Höhe der Verluste festgestellt wurde, war die DĂŒngung mit BiogasgĂŒllen mit signifikant erhöhten NH3-Verlusten verknĂŒpft. Eine abschließende Bewertung der Produktionssysteme ist erst durch Analyse der experimentellen Ergebnisse mit einem Systemmodell möglich

    Nitrification inhibitors reduce N2O emissions induced by application of biogas digestate to oilseed rape

    Get PDF
    Winter oilseed rape (WOSR) is the major oil crop cultivated in Europe and the most important feedstock for biodiesel. Up to 90% of the greenhouse gas (GHG) emissions from biodiesel production can occur during oilseed rape cultivation. Therefore, mitigation strategies are required and need to focus on direct nitrous oxide (N2O) emission as one of the largest GHG contributors in biodiesel production. Earlier studies show that nitrification inhibitors (NIs) can reduce N2O emissions derived from N-fertilization. Since information on the effect of biogas digestates with or without NIs on N2O emissions from WOSR fields is scarce, the aim of this study was to evaluate their effects on N2O emissions, mineral N dynamics, and oil yield in WOSR production fertilized with digestate. The study was conducted at five sites across Germany over three years resulting in 15 full site-years data sets. Across all sites and years, N2O emission from WOSR fertilized with biogas digestate (180 kg NH4+-N ha−1yr−1) ranged between 0.2 and 3.5 kg N2O–N ha−1 yr−1. Due to the reduction of the nitrate concentrations following digestate application, application of NI significantly reduced annual N2O emission by 36%. Our results demonstrate that NI can be an effective measure for reducing N2O emissions from digestate application, but its effectiveness depends on soil and weather conditions, and ultimately on the site-specific potential for N2O production and release. There was no effect of NI application on grain and oil yield.Bundesministerium fĂŒr ErnĂ€hrung und Landwirtschaft (DE)UniversitĂ€t Hohenheim (3153)Peer Reviewe

    Assessing nitrous oxide emissions and productivity of cropping systems for biogas production using digestate and mineral fertilisation in a coastal marsh site

    Get PDF
    Significant greenhouse gas emissions during substrate cultivation reduces the potential environmental benefits of biogas production. This study investigates the productivity of different cropping systems and their environmental impact in terms of nitrous oxide (N2O) emissions under the environmental conditions of the coastal marsh regions (Northern Germany) with heavy clay soils, in a 2-year field trial (April 2009-March 2011). Treatments included four cropping systems (perennial ryegrass (Lolium perenne, PR) ley, continuous maize (Zea mays), a rotation (CR1) of spring wheat (Triticum aestivum), Italian ryegrass (Lolium multiflorum, IR) and maize, and a rotation (CR2) of maize, winter wheat and IR; two sources of N (nitrogen) fertilizers (calcium ammonium nitrate, and biogas residue (BR)), and three levels of N fertilizer applications (control, moderate, high). Nitrous oxide emissions were determined for the unfertilized and highly fertilized cropping systems comprising PR ley, CR1 and CR2. Cumulative annual N2O emissions varied across the treatments, ranging from 0.82 to 3.4 kg N2O-N ha−1 year−1. Under high N fertilizer applications, PR ley incurred higher N2O-N losses compared to other tested cropping systems, and IR cover crop caused relatively high N2O-N emissions in a short vegetation period. The study observed wide range of yield-scaled emissions (0.00–5.60 kg N2O-N (Mg DM)−1) for different crops, emphasizing the variability in N2O emissions linked to cropping systems. The N2O-N emission factors for the three cropping systems were found to be low to moderate for all treatments, ranging from 0.03% to 0.53% compared to IPCC default Tier 1 N2O-N EFs. The lower emissions in the study were associated with prolonged high soil moisture conditions (water filled pore space >70%.), indicated by its negative correlation with N2O-N fluxes. Low dry matter and N yield of PR and of the wheat-IR sequence after BR application compared to other crops indicated a low N use efficiency. The estimation of N2O-N emissions based on N surplus was not promising specifically for the coastal study site where high groundwater level and organic matter in the soils were the predominant drivers for N2O-N emissions

    Emission klimarelevanter Spurengase in der intensiven Pflanzenproduktion

    No full text
    corecore