10,474 research outputs found

    Heterogeneity in 12^{12}CO/13^{13}CO Ratios Toward Solar-Type Young Stellar Objects

    Get PDF
    This study reports an unusual heterogeneity in [12^{12}C16^{16}O]/[13^{13}C16^{16}O] abundance ratios of carbon monoxide observed in the gas phase toward seven ~ solar-mass YSOs and three dense foreground clouds in the nearby star-forming regions, Ophiuchus, Corona Australis, Orion, Vela and an isolated core, L43. Robust isotope ratios were derived using infrared absorption spectroscopy of the 4.7 ÎŒ\mum fundamental and 2.3 ÎŒ\mum overtone rovibrational bands of CO at very high resolution (λ\lambda/Δ\Deltaλ≈95,000\lambda\approx 95,000), observed with the CRIRES spectrograph on the Very Large Telescope. We find [12^{12}C16^{16}O]/[13^{13}C16^{16}O] values ranging from ~ 85 to 165, significantly higher than those of the local interstellar medium (~ 65 to 69). These observations are evidence for isotopic heterogeneity in carbon reservoirs in solar-type YSO environments, and encourage the need for refined Galactic chemical evolution models to explain the 12^{12}C/13^{13}C discrepancy between the solar system and local ISM. The oxygen isotope ratios are consistent with isotopologue-specific photodissociation by CO self-shielding toward the disks, VV CrA N and HL Tau, further substantiating models predicting CO self-shielding on disk surfaces. However, we find that CO self-shielding is an unlikely general explanation for the high [12^{12}C16^{16}O]/[13^{13}C16^{16}O] ratios observed in this study. Comparison of the solid CO against gas-phase [12^{12}C16^{16}O]/[13^{13}C16^{16}O] suggests that interactions between CO ice and gas reservoirs need to be further investigated as at least a partial explanation for the unusually high [12^{12}C16^{16}O]/[13^{13}C16^{16}O] observed.Comment: 16 pages, 14 figures, 7 tables. Accepted for publication in The Astrophysical Journa

    Casimir effect for curved geometries: PFA validity limits

    Full text link
    We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using worldline numerics, we quantitatively determine the validity bounds of the proximity force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R > 0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA.Comment: 4 pages, 4 figure

    Geometric quantum gate for trapped ions based on optical dipole forces induced by Gaussian laser beams

    Full text link
    We present an implementation of quantum logic gates via internal state dependent displacements of ions in a linear Paul trap caused by optical dipole forces. Based on a general quantum analysis of the system dynamics we consider specific implementations with alkaline earth ions. For experimentally realistic parameters gate infidelities as low as 10−410^{-4} can be obtained.Comment: 10 pages, 4 figure

    Micro-canonical pentaquark production in \ee annihilations

    Full text link
    The existence of pentaquarks, namely baryonic states made up of four quarks and one antiquark, became questionable, because the candidates, i.e. the Θ+\Theta^+ peak, are seen in certain reactions, i.e. p+p collisions, but not in others, i.e. \ee annihilations. In this paper, we estimate the production of Θ+(1540)\Theta ^{+}(1540) and Ξ−−(1860)\Xi^{--} (1860) in \ee annihilations at different energies using Fermi statistical model as originally proposed in its microcanonical form. The results is compared with that from pp collisions at SPS and RHIC energies. We find that, if pentaquark states exist, the production is highly possible in \ee annihilations. For example, at LEP energy s\sqrt{s}=91.2 GeV, both Θ+(1540)\Theta ^{+}(1540) and Ξ−−(1860)\Xi^{--} (1860) yield more than in pp collisions at SPS and RHIC energy.Comment: 7 pages 2 figure

    Mode Bifurcation and Fold Points of Complex Dispersion Curves for the Metamaterial Goubau Line

    Full text link
    In this paper the complex dispersion curves of the four lowest-order transverse magnetic modes of a dielectric Goubau line (ϔ>0,Ό>0\epsilon>0, \mu>0) are compared with those of a dispersive metamaterial Goubau line. The vastly different dispersion curve structure for the metamaterial Goubau line is characterized by unusual features such as mode bifurcation, complex fold points, both proper and improper complex modes, and merging of complex and real modes

    Cosmological Radiation Hydrodynamics with ENZO

    Full text link
    We describe an extension of the cosmological hydrodynamics code ENZO to include the self-consistent transport of ionizing radiation modeled in the flux-limited diffusion approximation. A novel feature of our algorithm is a coupled implicit solution of radiation transport, ionization kinetics, and gas photoheating, making the timestepping for this portion of the calculation resolution independent. The implicit system is coupled to the explicit cosmological hydrodynamics through operator splitting and solved with scalable multigrid methods. We summarize the numerical method, present a verification test on cosmological Stromgren spheres, and then apply it to the problem of cosmological hydrogen reionization.Comment: 14 pages, 3 figures, to appear in Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation Hydrodynamics, Ed. I. Hubeny, American Institute of Physics (2009

    A lattice evaluation of four-quark operators in the nucleon

    Get PDF
    Nucleon matrix elements of various four-quark operators are evaluated in quenched lattice QCD using Wilson fermions. Some of these operators give rise to twist-four contributions to nucleon structure functions. Furthermore, they bear valuable information about the diquark structure of the nucleon. Mixing with lower-dimensional operators is avoided by considering appropriate representations of the flavour group. We find that for a certain flavour combination of baryon structure functions, twist-four contributions are very small. This suggests that twist-four effects for the nucleon might be much smaller than m_p^2/Q^2.Comment: 17 pages, 3 figure

    Applied lattice gauge calculations: diquark content of the nucleon

    Get PDF
    As an example of an application of lattice QCD we describe a computation of four-quark operators in the nucleon. The results are interpreted in a diquark language.Comment: 6 pages, 1 figure, Invited talk given by M. G\"ockeler at the European Workshop on the QCD Structure of the Nucleon (QCD - N'02), Ferrara, Italy, 3-6 Apr 200
    • 

    corecore