467 research outputs found
Downwind rotor horizontal axis wind turbine noise prediction
NASA and industry are currently cooperating in the conduct of extensive experimental and analytical studies to understand and predict the noise of large, horizontal axis wind turbines. This effort consists of (1) obtaining high quality noise data under well controlled and documented test conditions, (2) establishing the annoyance criteria for impulse noise of the type generated by horizontal axis wind turbines with rotors downwind of the support tower, (3) defining the wake characteristics downwind of the axial location of the plane of rotation, (4) comparing predictions with measurements made by use of wake data, and (5) comparing predictions with annoyance criteria. The status of work by Hamilton Standard in the above areas which was done in support of the cooperative NASA and industry studies is briefly summarized
Role of L-alanine for redox self-sufficient amination of alcohols
Klatte S, Wendisch VF. Role of L-alanine for redox self-sufficient amination of alcohols. Microbial Cell Factories. 2015;14(1): 9.Background
In white biotechnology biocatalysis represents a key technology for chemical functionalization of non-natural compounds. The plasmid-born overproduction of an alcohol dehydrogenase, an L-alanine-dependent transaminase and an alanine dehydrogenase allows for redox self-sufficient amination of alcohols in whole cell biotransformation. Here, conditions to optimize the whole cell biocatalyst presented in (Bioorg Med Chem 22:5578–5585, 2014), and the role of L-alanine for efficient amine functionalization of 1,10-decanediol to 1,10-diaminodecane were analyzed.
Results
The enzymes of the cascade for amine functionalization of alcohols were characterized in vitro to find optimal conditions for an efficient process. Transaminase from Chromobacterium violaceum, TaCv, showed three-fold higher catalytic efficiency than transaminase from Vibrio fluvialis, TaVf, and improved production at 37°C. At 42°C, TaCv was more active, which matched thermostable alcohol dehydrogenase and alanine dehydrogenase and improved the 1,10-diaminodecane production rate four-fold. To study the role of L-alanine in the whole cell biotransformation, the L-alanine concentration was varied and 1,10.diaminodecane formation tested with constant 10 mM 1,10- decanediol and 100 mM NH4Cl. Only 5.6% diamine product were observed without added L-alanine. L-alanine concentrations equimolar to that of the alcohol enabled for 94% product formation but higher L-alanine concentrations allowed for 100% product formation. L-alanine was consumed by the E. coli biocatalyst, presumably due to pyruvate catabolism since up to 16 mM acetate accumulated. Biotransformation employing E. coli strain YYC202/pTrc99a-ald-adh-taCv, which is unable to catabolize pyruvate, resulted in conversion with a selectivity of 42 mol-%. Biotransformation with E. coli strains only lacking pyruvate oxidase PoxB showed similar reduced amination of 1,10-decanediol indicating that oxidative decarboxylation of pyruvate to acetate by PoxB is primarily responsible for pyruvate catabolism during redox self-sufficient amination of alcohols using this whole cell biocatalyst.
Conclusion
The replacement of the transaminase TaVf by TaCv, which showed higher activity at 42°C, in the artificial operon ald-adh-ta improved amination of alcohols in whole cell biotransformation. The addition of L-alanine, which was consumed by E. coli via pyruvate catabolism, was required for 100% product formation possibly by providing maintenance energy. Metabolic engineering revealed that pyruvate catabolism occurred primarily via oxidative decarboxylation to acetate by PoxB under the chosen biotranformation conditions
Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers
Proton pump inhibitor-induced nephrotoxicity
Proton pump inhibitors are widely used, and generally considered safe. In this clinical lesson two cases are presented with a strong suspicion of proton pump inhibitor induced decline of kidney function. This adverse event has only recently been identified in epidemiological studies. Our cases illustrate that chronic proton pump inhibitor nephrotoxicity can manifest subtle and may therefore be difficult to recognize. We discuss the current epidemiological evidence to support these observations, and the pathophysiology and clinical manifestations of proton pump inhibitor nephrotoxicity. In case a subject using a proton pump inhibitor shows kidney function decline, without a clear cause, withdrawal of this medication is advised. Although for an individual patient the risk may not be high, the large number of proton pump users makes that this adverse event is important on a population level.</p
A Computer-Assisted Uniqueness Proof for a Semilinear Elliptic Boundary Value Problem
A wide variety of articles, starting with the famous paper (Gidas, Ni and
Nirenberg in Commun. Math. Phys. 68, 209-243 (1979)) is devoted to the
uniqueness question for the semilinear elliptic boundary value problem
-{\Delta}u={\lambda}u+u^p in {\Omega}, u>0 in {\Omega}, u=0 on the boundary of
{\Omega}, where {\lambda} ranges between 0 and the first Dirichlet Laplacian
eigenvalue. So far, this question was settled in the case of {\Omega} being a
ball and, for more general domains, in the case {\lambda}=0. In (McKenna et al.
in J. Differ. Equ. 247, 2140-2162 (2009)), we proposed a computer-assisted
approach to this uniqueness question, which indeed provided a proof in the case
{\Omega}=(0,1)x(0,1), and p=2. Due to the high numerical complexity, we were
not able in (McKenna et al. in J. Differ. Equ. 247, 2140-2162 (2009)) to treat
higher values of p. Here, by a significant reduction of the complexity, we will
prove uniqueness for the case p=3
The VENUSS prognostic model to predict disease recurrence following surgery for non-metastatic papillary renal cell carcinoma: development and evaluation using the ASSURE prospective clinical trial cohort
Abstract: Background: The current World Health Organization classification recognises 12 major subtypes of renal cell carcinoma (RCC). Although these subtypes differ on molecular and clinical levels, they are generally managed as the same disease, simply because they occur in the same organ. Specifically, there is a paucity of tools to risk-stratify patients with papillary RCC (PRCC). The purpose of this study was to develop and evaluate a tool to risk-stratify patients with clinically non-metastatic PRCC following curative surgery. Methods: We studied clinicopathological variables and outcomes of 556 patients, who underwent full resection of sporadic, unilateral, non-metastatic (T1–4, N0–1, M0) PRCC at five institutions. Based on multivariable Fine-Gray competing risks regression models, we developed a prognostic scoring system to predict disease recurrence. This was further evaluated in the 150 PRCC patients recruited to the ASSURE trial. We compared the discrimination, calibration and decision-curve clinical net benefit against the Tumour, Node, Metastasis (TNM) stage group, University of California Integrated Staging System (UISS) and the 2018 Leibovich prognostic groups. Results: We developed the VENUSS score from significant variables on multivariable analysis, which were the presence of VEnous tumour thrombus, NUclear grade, Size, T and N Stage. We created three risk groups based on the VENUSS score, with a 5-year cumulative incidence of recurrence equalling 2.9% in low-risk, 15.4% in intermediate-risk and 54.5% in high-risk patients. 91.7% of low-risk patients had oligometastatic recurrent disease, compared to 16.7% of intermediate-risk and 40.0% of high-risk patients. Discrimination, calibration and clinical net benefit from VENUSS appeared to be superior to UISS, TNM and Leibovich prognostic groups. Conclusions: We developed and tested a prognostic model for patients with clinically non-metastatic PRCC, which is based on routine pathological variables. This model may be superior to standard models and could be used for tailoring postoperative surveillance and defining inclusion for prospective adjuvant clinical trials
- …