7 research outputs found

    Regulation of MBK-2/DYRK by CDK-1 and the Pseudophosphatases EGG-4 and EGG-5 during the Oocyte-to-Embryo Transition

    Get PDF
    SummaryDYRKs are kinases that self-activate in vitro by autophosphorylation of a YTY motif in the kinase domain, but their regulation in vivo is not well understood. In C. elegans zygotes, MBK-2/DYRK phosphorylates oocyte proteins at the end of the meiotic divisions to promote the oocyte-to-embryo transition. Here we demonstrate that MBK-2 is under both positive and negative regulation during the transition. MBK-2 is activated during oocyte maturation by CDK-1-dependent phosphorylation of serine 68, a residue outside of the kinase domain required for full activity in vivo. The pseudotyrosine phosphatases EGG-4 and EGG-5 sequester activated MBK-2 until the meiotic divisions by binding to the YTY motif and inhibiting MBK-2′s kinase activity directly, using a mixed-inhibition mechanism that does not involve tyrosine dephosphorylation. Our findings link cell-cycle progression to MBK-2/DYRK activation and the oocyte-to-embryo transition

    The Egg Surface LDL Receptor Repeat-Containing Proteins EGG-1 and EGG-2 Are Required for Fertilization in Caenorhabditis elegans

    Get PDF
    SummaryThe molecular machinery that mediates sperm-egg interactions at fertilization is largely unknown. We identify two partially redundant egg surface LDL receptor repeat-containing proteins (EGG-1 and EGG-2) that are required for Caenorhabditis elegans fertility in hermaphrodites, but not males. Wild-type sperm cannot enter the morphologically normal oocytes produced by hermaphrodites that lack egg-1 and egg-2 function despite direct gamete contact. Furthermore, we find that levels of meiotic maturation/ovulation and sperm migratory behavior are altered in egg-1 mutants. These observations suggest an unexpected regulatory link between fertilization and other events necessary for reproductive success. egg-1 and egg-2 are the result of a gene duplication in the nematode lineage leading to C. elegans. The two closely related species C. briggsae and C. remanei encode only a single egg-1/egg-2 homolog that is required for hermaphrodite/female fertility. In addition to being the first identified egg components of the nematode fertilization machinery, the egg-1 and egg-2 gene duplication could be vital with regards to maximizing C. elegans fecundity and understanding the evolutionary differentiation of molecular function and speciation

    Regulation of MBK-2/DYRK by CDK-1 and the Pseudophosphatases EGG-4 and EGG-5 during the Oocyte-to-Embryo Transition

    No full text
    SUMMARY DYRKs are kinases that self-activate in vitro by autophosphorylation of a YTY motif in the kinase domain, but their regulation in vivo is not well understood. In C. elegans zygotes, MBK-2/DYRK phosphorylates oocyte proteins at the end of the meiotic divisions to promote the oocyte-to-embryo transition. Here we demonstrate that MBK-2 is under both positive and negative regulation during the transition. MBK-2 is activated during oocyte maturation by CDK-1-dependent phosphorylation of serine 68, a residue outside of the kinase domain required for full activity in vivo. The pseudotyrosine phosphatases EGG-4 and EGG-5 sequester activated MBK-2 until the meiotic divisions by binding to the YTY motif and inhibiting MBK-2 0 s kinase activity directly, using a mixed-inhibition mechanism that does not involve tyrosine dephosphorylation. Our findings link cellcycle progression to MBK-2/DYRK activation and the oocyte-to-embryo transition

    EGG-3 Regulates Cell-Surface and Cortex Rearrangements during Egg Activation in Caenorhabditis elegans

    Get PDF
    SummaryFertilization triggers egg activation and converts the egg into a developing embryo. The events of this egg-to-embryo transition typically include the resumption of meiosis, the reorganization of the cortical actin cytoskeleton, and the remodeling of the oocyte surface [1–3]. The factors that regulate sperm-dependent egg-activation events are not well understood. Caenorhabditis elegans EGG-3, a member of the protein tyrosine phosphatase-like (PTPL) family [4], is essential for regulating cell-surface and cortex rearrangements during egg activation in response to sperm entry. Although fertilization occurred normally in egg-3 mutants, the polarized dispersal of F-actin is altered, a chitin eggshell is not formed, and no polar bodies are produced. EGG-3 is associated with the oocyte plasma membrane in a pattern that is similar to CHS-1 and MBK-2. CHS-1 is required for eggshell deposition [5–7], whereas MBK-2 is required for the degradation of maternal proteins during the egg-to-embryo transition [8–12]. The localization of CHS-1 and EGG-3 are interdependent and both genes were required for the proper localization of MBK-2 in oocytes. Therefore, EGG-3 plays a central role in egg activation by influencing polarized F-actin dynamics and the localization or activity of molecules that are directly involved in executing the egg-to-embryo transition
    corecore