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Summary

Fertilization triggers egg activation and converts
the egg into a developing embryo. The events of this

egg-to-embryo transition typically include the resump-

tion of meiosis, the reorganization of the cortical actin
cytoskeleton, and the remodeling of the oocyte surface

[1–3]. The factors that regulate sperm-dependent egg-
activation events are not well understood. Caenorhab-

ditis elegans EGG-3, a member of the protein tyrosine
phosphatase-like (PTPL) family [4], is essential for reg-

ulating cell-surface and cortex rearrangements during
egg activation in response to sperm entry. Although

fertilization occurred normally in egg-3 mutants, the
polarized dispersal of F-actin is altered, a chitin egg-

shell is not formed, and no polar bodies are produced.
EGG-3 is associated with the oocyte plasma membrane

in a pattern that is similar to CHS-1 and MBK-2. CHS-1 is
required for eggshell deposition [5–7], whereas MBK-2

is required for the degradation of maternal proteins
during the egg-to-embryo transition [8–12]. The locali-

zation of CHS-1 and EGG-3 are interdependent and
both genes were required for the proper localization

of MBK-2 in oocytes. Therefore, EGG-3 plays a central
role in egg activation by influencing polarized F-actin

dynamics and the localization or activity of molecules
that are directly involved in executing the egg-to-

embryo transition.

Results and Discussion

The egg-3 gene (F44F4.2) was identified as having a role
in C. elegans fertility through a large-scale RNAi analysis
by a nonredundant cDNA library [13]. RNAi of egg-3
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resulted in sterile hermaphrodites that produced un-
shelled oocytes similar to egg-1 and egg-2 mutants
[14] (see Supplemental Experimental Procedures avail-
able with this article online). The egg-3 gene has no clear
homolog outside nematodes but encodes a member of
the protein tyrosine phosphatase-like (PTPL) family [4,
15]. This emerging family of molecules includes the
Arabidopsis PASTICCINO2 (PAS2) that is involved in
cell growth and differentiation, as well as C. elegans
sdf-9 that is involved in the regulation of dauer larva for-
mation and insulin-like signaling [15–19]. PTP domains
contain the conserved motif (I/V)HCXAGXXR(S/T)G,
with cysteine and arginine residues being essential for
catalysis [20]. PTPL family proteins are characterized
by a lack of these cysteine or arginine residues, but
they can bind phosphorylated substrates [4, 15, 21].
For example, the PTPL family protein PAS2 has been
shown to lack phosphatase activity but bind a phosphor-
ylated cyclin-dependent kinase [17]. The catalytic argi-
nine residue is missing in egg-3 (Figure 1A). Therefore,
EGG-3 may also lack phosphatase activity similar to
other PTPL family proteins.

For further analysis of egg-3 function, a deletion allele
of egg-3(tm1191) was obtained from the National Biore-
source Project for the Nematode (Japan). This strain
carries a 430 base pair deletion that is predicted to result
in a protein lacking part of the PTPL domain (Figure 1B).
Brood size analysis showed that egg-3(tm1191) homo-
zygous hermaphrodites and deficiency transheterozy-
gous egg-3(tm1191)/mnDf90 hermaphrodites produced
no viable progeny identical to egg-3(RNAi) (Table S1).
egg-3(tm1191) mutant sterility could be rescued by
a transgene that included a wild-type copy of the
egg-3 gene (Table S1) or a GFP:EGG-3 fusion driven
by a germline-specific promoter (see below). Together,
these data established that egg-3(RNAi) and egg-
3(tm1191) represent a strong loss of function.

Crossing wild-type males to egg-3 mutant hermaphro-
dites (n = 15) did not rescue fertility. Male worms that
were homozygous for egg-3(tm1191) were completely
fertile and produced sperm with normal morphology
(data not shown). This indicated that infertility defects
were associated with oocyte development or function
rather than sperm development or function. Gametogen-
esis, ovulation, fertilization, and the block to polyspermy
were observed to occur normally in egg-3 mutants [22]
(Figures 1C and 1D; Table S2). However, several aspects
of egg activation were abnormal in egg-3 mutants. With
transgenic animals carrying GFP fused to the filamen-
tous actin-binding domain of Drosophila melanogaster
moesin [23] (GFP-moe) (Figure 1E), it was observed
that an ‘‘actin cap’’ forms in the presumptive posterior
of the egg cortex approximately 2–4 min after the entry
of the oocyte into the spermatheca (the site of fertiliza-
tion) (N.V.V. and F.P., unpublished data). This actin cap
formation is dependent on fertilization. Thereafter, the
F-actin cap is dispersed to the posterior half of the em-
bryos as they leave the spermatheca and enter the
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Figure 1. The PTPL Family Protein EGG-3 Is Required for Egg Activation

(A) Alignment of the phosphatase domain of EGG-3 and the ortholog in C. briggsae (CBG20647), phosphatases in Drosophila melanogaster

(CG10975-PB), and in Homo sapiens (PTP-N9) with Clustal W software. Green, identical; purple, conserved; blue, semiconserved. Altered amino

acid residues in the PTP motif are marked.

(B) Gene structure of egg-3. egg-3(tm1191) mutants deleted 430 bp, from the middle of intron 3 to the end of exon 4. cDNA yk1434 g11 included

SL1 sequence upstream of exon 1.

(C) DIC images of wild-type and egg-3(tm1191) hermaphrodites. Arrowheads indicate spermatheca. Scale bar represents 10 mm.

(D) DAPI staining of newly fertilized embryos of wild-type, egg-3(tm1191), and chs-1(ok1120). Arrowheads indicate sperm DNA. Scale bar

represents 10 mm.

(E) Polarized dispersal of F-actin is lost in egg-3(RNAi) worms. The dispersal of the actin cap crossed 50% egg length as denoted by dashed line

in egg-3(RNAi) embryos. Wild-type control 15/15 embryos. egg-3(RNAi) 5/7 embryos. Scale bar represents 10 mm.

(F) Chitin staining of wild-type and egg-3(tm1191) embryos. Arrowheads indicate sperm DNA. Magenta, chitin; green, DAPI. Scale bar represents

10 mm.

(G) GFP-histone in wild-type, egg-3(tm1191), and chs-1(ok1120) embryos during meiosis. meta I, metaphase I; ana I, anaphase I; meta II, meta-

phase II; ana II, anaphase II. Arrows indicate polar body. Scale bar represents 5 mm.
uterus (N.V.V. and F.P., unpublished data) (Figure 1E).
In egg-3(RNAi) worms, normal cortical rearrangements
occurred during meiotic maturation [22] and the actin
cap was indistinguishable from wild-type. However,
F-actin dispersed aberrantly to the anterior side of the
cortex (Table S2; Figure 1E). These experiments show
that egg-3 is not required for the formation of the actin
cap but is required for the polarized dispersal of the actin
cytoskeleton in the cell cortex during the egg-to-embryo
transition.

In many species, the egg surface changes dramati-
cally after fertilization and during the egg-to-embryo
transition. In C. elegans, a chitinous eggshell is secreted
in response to sperm entry and covers the embryo to
provide chemical impermeability and mechanical sup-
port for embryonic development [24]. Eggshell forma-
tion is thought to start in the spermatheca within the first
5 min after fertilization. In C. elegans, the eggshell con-
sists of three layers [25]. Based on comparisons to par-
asitic nematodes [26], these three layers are thought to
be an outer vitelline membrane, a middle chitin-contain-
ing layer, and an inner lipid-rich layer. We see that at
least the chitin-containing layer is already formed at
metaphase I in wild-type embryos (Figure 1F). However,
egg-3 mutant embryos lacked chitin layers at meta-
phase I (Figure 1F) and all later stages (endomitotic
stages after meiosis; data not shown). Therefore, egg-
3 function is required for the formation of the eggshell
chitin layer after fertilization.

Sperm entry also triggers the resumption of meiosis
and polar body formation [27] (Figure 1G). We observed
oocyte chromosomes during meiosis by using GFP-his-
tone and GFP-tubulin in wild-type and egg-3 mutants.
In egg-3 mutants, meiotic spindle translocation and
rotation occurred normally [27] (Figure S1), and chromo-
somes segregated properly until anaphase I (Figure 1G).
However, despite meiotic progression, no polar bodies
were formed after the completion of meiosis I and II
(Figure 1G and data not shown). Additionally, 12 individ-
ualized chromosomes were often seen at the beginning
of meiosis II in egg-3 mutants (Figure 1G). We also ob-
served that CYB-1:GFP (cyclin B) was degraded during
meiosis II in both wild-type [28, 29] and egg-3 mutant
oocytes (Figure S2). This further suggests that there is
no significant meiotic delay and meiotic progression is
not dependent on EGG-3 function. We conclude that
EGG-3 is not required for meiotic progression but is re-
quired for polar body formation. These meiotic defects
seen in egg-3 mutants are similar to those seen in em-
bryos depleted of F-actin by latrunculin A treatment
and profilin pfn-1(RNAi) embryos [30].

To examine the subcellular localization of EGG-3,
we created transgenic worm strains carrying inte-
grated gfp or mCherry:egg-3 fusions driven by the
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Figure 2. GFP:EGG-3 Is Associated with

Oocyte Membranes and Its Localization Is

Dependent on chs-1

(A) GFP:EGG-3 is associated with oocyte

plasma membranes and formed foci after fer-

tilization. The bulk of GFP:EGG-3 is cytoplas-

mic in chs-1(ok1120) mutants. Arrowheads

indicate foci.

(B) mCherry:EGG-3 leaves membranes and

forms foci from anaphase I. meta I, meta-

phase I; ana I, anaphase I; magenta, mCher-

ry:EGG-3; green, GFP:histone.

Scale bars represent 10 mm.
germline-specific pie-1 promoter [31]. GFP:EGG-3 was
associated with the plasma membrane of oocytes and
newly fertilized embryos (Figure 2A). Later, it moved to
cytoplasmic foci and was subsequently degraded
(Figure 2A). To determine the timing of this dynamic re-
localization, we constructed worm strains expressing
both GFP-histone and mCherry:EGG-3. In these ani-
mals, we were able to determine that mCherry:EGG-3
moved from a membrane-associated localization pat-
tern to foci at anaphase I (Figure 2B). This redistribution
did not depend on fertilization but did depend on mei-
otic progression. GFP:EGG-3 was localized normally
and formed foci in spe-9(hc88) fertilization-defective
mutants [32] (Figure S3A). However, GFP:EGG-3 stayed
associated with the plasma membrane in mat-1(RNAi)
worms where oocytes were arrested at metaphase I
[33, 34] (Figure S3A).

Because egg-3 mutant oocytes lacked an eggshell,
we reasoned that we might be able to detect an inter-
action between EGG-3 and molecules required for
eggshell formation. The chs-1 gene encodes a chitin
synthase that is predicted to have 15 transmembrane
domains and catalyzes the polymerization of UDP-N-
acetyl-glucosamine to produce chitin [5–7]. The chs-1
gene is essential for eggshell formation and chs-1 mu-
tants produce oocyte phenotypes that are similar to
egg-3 mutants. In chs-1 mutants, fertilization occurred
but polar bodies and eggshell formation were lacking
(Figures 1D and 1G) [7]. Furthermore, 12 individualized
chromosomes were often seen in chs-1 mutant oocytes
(Figure 1G).

In order to examine CHS-1 localization, we created
worms expressing GFP:CHS-1 with the pie-1 promoter.
GFP:CHS-1 was also associated with the oocyte surface
and colocalized with mCherry:EGG-3 in foci in newly fer-
tilized embryos (Figures 3A and 3B). Most GFP:EGG-3
was not associated with oocyte membranes and was
cytoplasmic in chs-1 mutants (Figure 2A). The converse
was also true. The amount of GFP:CHS-1 on the oocyte
membrane was decreased in egg-3 mutants when com-
pared to a wild-type background (Figure 3B), similar to
egg-3(RNAi) worms (data not shown). These results indi-
cate that EGG-3 and CHS-1 are membrane-associated
proteins and that their normal localization patterns are
interdependent.

The DYRK Kinase MBK-2 is required for the egg-to-
embryo transition in C. elegans and marks maternal
proteins for timely degradation [8–12]. The localization
pattern of GFP:MBK-2 appears to be identical to GFP:
EGG-3. We confirmed colocalization by constructing
a strain of worms carrying mCherry:EGG-3 and GFP:
MBK-2 (Figure 4B). Furthermore, GFP:MBK-2 was not as-
sociated with the oocyte plasma membrane in egg-3 or
chs-1 mutants (Figure 4A), similar to chs-1(RNAi) worms
[35] (data not shown). In contrast, loss of mbk-2 function
with RNAi did not alter the association of GFP:EGG-3 and
GFP:CHS-1 with the oocyte plasma membrane (Figures
S3A and S3B). We conclude that EGG-3 and CHS-1 are
required for the proper localization of MBK-2.

We have shown that EGG-3 is clearly required for
a number of important events of egg activation. These
events include the proper polarized reorganization of
the cortex actin cytoskeleton, eggshell formation, and
polar body formation. The dynamic localization patterns
of EGG-3 and CHS-1 were interdependent and MBK-2
required EGG-3 and CHS-1 for its proper localization in
oocytes. A number of hypotheses have been proposed
for the biochemical function of PTPL family proteins
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Figure 3. GFP:CHS-1 Is Associated with the

Oocyte Plasma Membrane and Colocalized

with mCherry-EGG-3

(A) GFP:CHS-1 (nnIs2) is associated with

the oocyte plasma membrane and formed

foci after fertilization. In egg-3(tm1191) mu-

tants, GFP:CHS-1(nnIs2) associated with

the plasma membrane was decreased.

GFP:CHS-1(nnEx2) showed the same results

by egg-3 RNAi-by-soaking (data not shown).

Arrowheads indicate foci.

(B) GFP:CHS-1(nnIs2) and mCherry:EGG-3

is colocalized in newly fertilized embryos.

Green, GFP:CHS-1; magenta, mCherry:

EGG-3.

Scale bars represent 10 mm.
that may be relevant to EGG-3 function during egg acti-
vation [21]. One idea is that PTPL proteins could function
as noncatalytic binding domains and work as molecular
‘‘adaptors’’ or ‘‘scaffolds’’ much like Src-homology 2
(SH2) domains [21]. Based on the molecular epistasis
of EGG-3, CHS-1, and MBK-2 with regards to their sub-
cellular localization, we favor this hypothesis for EGG-3
function. EGG-3 may be regulating the localization
and/or activity of the egg activation machinery by form-
ing a plasma membrane-associated complex. Indeed, it
has been recently determined that EGG-3 can bind di-
rectly to MBK-2 both in vitro and in vivo (see accompa-
nying paper in this issue of Current Biology [36]).
The polarized distribution of F-actin during egg acti-
vation appears to be an evolutionarily conserved oocyte
feature [37]. EGG-3 mutant oocytes showed normal
actin cap formation that is associated with sperm entry
(N.V.V. and F.P., unpublished data) but had defects in
the polarized dispersal of F-actin after fertilization. The
meiosis defects in egg-3 mutants might be related to
this actin reorganization defect at the cortex because
the meiosis phenotypes of egg-3 mutants are notably
similar to the phenotypes of actin filament-depleted
worms [30]. However, F-actin in egg-3 mutant oocytes
during telophase of meiosis looked similar to wild-type
(data not shown). Therefore, the precise mechanism of
Figure 4. EGG-3 and CHS-1 Are Required for

the Proper Membrane-Associated Localiza-

tion of GFP:MBK-2

(A) GFP:MBK-2 is not localized to oocyte

plasma membranes in egg-3(tm1191) and

chs-1(ok1120) mutants. Arrowheads indicate

foci.

(B) GFP:MBK-2 and mCherry:EGG-3 is colo-

calized in newly fertilized embryos. Green,

GFP:MBK-2; magenta, mCherry:EGG-3.

Scale bars represent 10 mm.
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how EGG-3 influences polar body formation remains to
be determined.

Although the reorganization of F-actin, eggshell for-
mation, and polar body formation were abnormal in
egg-3 mutant oocytes, the block to polyspermy and mei-
otic progression occurred. As noted above, EGG-3 might
function in stabilizing CHS-1 and MBK-2 associations
with the oocyte plasma membrane. If this was the case,
many defects seen in egg-3 mutants could be due to
a decrease in proper CHS-1 localization. CHS-1 would
then be required for the polarized reorganization of F-
actin and polar body formation. Another possibility is
that EGG-3 might play a role in transmitting a sperm entry
signal to key downstream events required for the egg-
to-embryo transition. The block to polyspermy and mei-
otic progression from anaphase I are sperm-dependent
events as well as the events that are defective in egg-3
mutants. This indicates that sperm entry might not be de-
tected properly in egg-3 oocytes and that egg-3 might
function in one of the signal cascades that triggers parts
of egg activation events in response to sperm entry. An
exciting candidate for a sperm signal is encoded by the
paternal effect lethal spe-11 gene [38]. Although SPE-
11 is a sperm-supplied protein, spe-11 mutants have
identical defects as displayed by maternal effect egg-3
mutants [27, 39]. Therefore, this work provides the first
glimpse of the molecules required for the flow of informa-
tion from the union of sperm and egg to the cascade of
events required for embryonic development.

Genome sequencing has established that PTPL family
encoding genes are evolutionarily conserved from plants
to humans and carry out vital functions in many of these
organisms [15]. For instance, there are at least 14 pre-
dicted catalytically inactive PTPL domain-containing
genes in humans [15]. The biological functions of the
vast majority of these genes still need to be elucidated.
However, several PTPL family genes have been impli-
cated in human genetic disease. Consistent with these
links, another C. elegans PTPL family protein, SDF-9, is
a regulator of insulin-like signaling [19, 40]. Like EGG-3,
SDF-9 is localized to the plasma membrane of the cells
where it is expressed [19]. It is possible that membrane
localization is a common feature of PTPL proteins.

This study represents the first link of a PTPL family
protein (EGG-3) to the events of egg activation. EGG-3
plays a central role in egg activation by influencing po-
larized F-actin dynamics and the localization and activ-
ity of molecules that are directly involved in executing
the egg-to-embryo transition. Therefore, we not only es-
tablish a new role for this class of molecule but also pro-
vide new insights into the events of egg activation. This
work could eventually lead to clinical advances directed
at improved diagnostics and treatments for infertility
cases in humans that are associated with defective
egg activation.

Supplemental Data

Three figures, two tables, and Experimental Procedures are avail-

able at http://www.current-biology.com/cgi/content/full/17/18/

1555/DC1/.
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