8 research outputs found

    Axitinib inhibits retinal and choroidal neovascularization in in vitro and in vivo models

    Get PDF
    AbstractAge-related Macular Degeneration (AMD) is the leading cause of visual impairment and blindness in the elderly in developed countries. Neovascular/exudative (wet) AMD is the aggressive form of AMD and can involve choroidal neovascularization and vascular leakage. Anti-vascular endothelial growth factor (anti-VEGF) medications have significantly improved treatment of wet-AMD. However, only approximately 40% of patients obtain full benefit from anti-VEGF therapy and the medications are given by intravitreal injection. Axitinib, a small molecule multi-receptor tyrosine kinase inhibitor used for the treatment of advanced renal cell carcinoma, is taken orally and inhibits VEGF activity by blocking VEGF receptors. Axitinib also has the advantage of blocking platelet derived growth factor (PDGF) receptors which play a role in neovascularization. Using in vitro human retinal microvascular endothelial cells (HRMVECs), human brain vascular pericytes (HBVRs), 3D co-culture vessel sprout assay, and in vivo laser induced rat choroidal neovascularization (CNV) models, the effect of axitinib on neovascularization was evaluated. Axitinib inhibited neovascularization better than anti-VEGF and/or anti-hPDGF-B mAb in the in vitro models demonstrating that combined inhibition of both VEGF and PDGF pathways may be synergistic in treating wet-AMD. Additionally, axitinib showed good efficacy at a low dose (0.875 mg/day) in laser-induced CNV model in rats. In conclusion our data shows that axitinib, an inhibitor of VEGF and PDGF-B pathways may be useful in ameliorating wet-AMD therapy

    Effect of ketoconazole on the pharmacokinetics of axitinib in healthy volunteers

    Get PDF
    Objective Axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptors 1, 2, and 3, is metabolized primarily by cytochrome P450 (CYP) 3A with minor contributions from CYP1A2, CYP2C19, and glucuronidation. Co-administration with CYP inhibitors may increase systemic exposure to axitinib and alter its safety profile. This study evaluated changes in axitinib plasma pharmacokinetic parameters and assessed safety and tolerability in healthy subjects, following axitinib co-administration with the potent CYP3A inhibitor ketoconazole. Methods In this randomized, single-blind, two-way crossover study, 32 healthy volunteers received placebo, followed by a single 5-mg oral dose of axitinib, administered either alone or on the fourth day of dosing with oral ketoconazole (400 mg/day for 7 days). Results Axitinib exposure was significantly increased in the presence of ketoconazole, with a geometric mean ratio for area under the plasma concentration–time curve from time zero to infinity of 2.06 (90% confidence interval [CI]: 1.84–2.30) and a geometric mean ratio for maximum plasma concentration (Cmax) of 1.50 (90% CI: 1.33–1.70). For axitinib alone or with ketoconazole, Cmax occurred 1.5 and 2.0 h after dosing, respectively. Adverse events were predominantly mild; the most commonly reported treatment-related adverse events were headache and nausea. Conclusions Axitinib plasma exposures and peak concentrations were increased following concurrent administration of axitinib and ketoconazole in healthy volunteers. Axitinib alone and in combination with ketoconazole was well tolerated. These findings provide an upper exposure for expected axitinib plasma concentrations in the presence of potent metabolic inhibition

    Developing a videocassette Program for pharmacy Education

    No full text

    Stability of nitroglycerin in intravenous admixtures

    No full text
    corecore