25 research outputs found

    The Need for Dynamic Process Simulation: A Review of Offshore Power‐to‐X Systems

    Get PDF
    The integration of offshore wind energy into Power-to-X (PtX) process chains offers opportunities for the efficient use of renewable energy. This article analyzes different PtX process chain configurations and their adaptation to the offshore environment. However, direct coupling of PtX platforms with fluctuating electrical energy poses major challenges. Dynamic process simulation is presented for analysis of different plant configurations and operating strategies. The article emphasizes the need for interdisciplinary research to consider technological as well as economic and environmental aspects

    Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria

    Get PDF
    Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL, to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-ofconcept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens

    Unique coding for authentication and anti-counterfeiting by controlled and random process variation in L-PBF and L-DED

    Get PDF
    Additive manufacturing technologies enable various possibilities to create and modify the material composition and structure on a local level, but are often prone to undesired defects and inhomogeneities. This contribution makes use of such flaws to generate material-inherent, hidden codes and watermarks in metals for authentication and anti-counterfeiting applications. By controlled and random process variation, unique codes that can be read and authenticated by an eddy current device were produced with the processes of laser powder bed fusion (L-PBF) and laser directed energy deposition (L-DED). Two approaches are presented: First, volumetric, porous structures with a defined shape are manufactured with L-PBF. Second, coatings are fabricated by L-DED with alternating process parameters, leading to local deviations of the magnetic permeability. This non-deterministic coding approach generates a distinctive material structure that triggers high signal amplitudes in the eddy current measurement. Counterfeiting becomes impossible due to the irreproducible melt pool dynamics. Statistical hypothesis testing proves that the system is able to prevent false acceptance or rejection of a code with a certainty of 500 million to one. A low-cost setup for a novel locking system demonstrates that a code can be sensed reliably within one second

    Enzyme-Responsive Nanoparticles and Coatings Made from Alginate/Peptide Ciprofloxacin Conjugates as Drug Release System

    No full text
    Infection-controlled release of antibacterial agents is of great importance, particularly for the control of peri-implant infections in the postoperative phase. Polymers containing antibiotics bound via enzymatically cleavable linkers could provide access to drug release systems that could accomplish this. Dispersions of nanogels were prepared by ionotropic gelation of alginate with poly-l-lysine, which was conjugated with ciprofloxacin as model drug via a copper-free 1,3-dipolar cycloaddition (click reaction). The nanogels are stable in dispersion and form films which are stable in aqueous environments. However, both the nanogels and the layers are degraded in the presence of an enzyme and the ciprofloxacin is released. The efficacy of the released drug against Staphylococcus aureus is negatively affected by the residues of the linker. Both the acyl modification of the amine nitrogen in ciprofloxacin and the sterically very demanding linker group with three annellated rings could be responsible for this. However the basic feasibility of the principle for enzyme-triggered release of drugs was successfully demonstrated

    Unique coding for authentication and anti-counterfeiting by controlled and random process variation in L-PBF and L-DED

    No full text
    Additive manufacturing technologies enable various possibilities to create and modify the material composition and structure on a local level, but are often prone to undesired defects and inhomogeneities. This contribution makes use of such flaws to generate material-inherent, hidden codes and watermarks in metals for authentication and anti-counterfeiting applications. By controlled and random process variation, unique codes that can be read and authenticated by an eddy current device were produced with the processes of laser powder bed fusion (L-PBF) and laser directed energy deposition (L-DED). Two approaches are presented: First, volumetric, porous structures with a defined shape are manufactured with L-PBF. Second, coatings are fabricated by L-DED with alternating process parameters, leading to local deviations of the magnetic permeability. This non-deterministic coding approach generates a distinctive material structure that triggers high signal amplitudes in the eddy current measurement. Counterfeiting becomes impossible due to the irreproducible melt pool dynamics. Statistical hypothesis testing proves that the system is able to prevent false acceptance or rejection of a code with a certainty of 500 million to one. A low-cost setup for a novel locking system demonstrates that a code can be sensed reliably within one second.ISSN:2214-860

    Valve Body Element with Embedded Sensors

    No full text
    Eine Kombination (9) aufweisend ein Ventilkörperelement (10) und einen Sensor (40), wobei das Ventilkörperelement (10) zumindest teilweise durch ein generatives Herstellungsverfahren schichtweise und einstückig aufgebaut worden ist und der Sensor (40) in das Ventilkörperelement (10) eingebettet ist. Zudem ein Verfahren zu deren Herstellung; ein Ventil (1) aufweisend solche Kombinationen (9) sowie ein Set aufweisend zwei oder mehr Ventilkörper (2)

    Biomimetic Enterobactin Analogue Mediates Iron-Uptake and Cargo Transport into E. coli and P. aeruginosa

    No full text
    The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone, known to be key for uptake into the cytosol. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa
    corecore