234 research outputs found
First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers
We report the first direct measurement of the overall characteristics of
microwave radio emission from extensive air showers. Using a trigger provided
by the KASCADE-Grande air shower array, the signals of the microwave antennas
of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have
been read out and searched for signatures of radio emission by high-energy air
showers in the GHz frequency range. Microwave signals have been detected for
more than 30 showers with energies above 3*10^16 eV. The observations presented
in this Letter are consistent with a mainly forward-directed and polarised
emission process in the GHz frequency range. The measurements show that
microwave radiation offers a new means of studying air showers at energies
above 10^17 eV.Comment: Accepted for publication in PR
The spectrum of high-energy cosmic rays measured with KASCADE-Grande
The energy spectrum of cosmic rays between 10**16 eV and 10**18 eV, derived
from measurements of the shower size (total number of charged particles) and
the total muon number of extensive air showers by the KASCADE-Grande
experiment, is described. The resulting all-particle energy spectrum exhibits
strong hints for a hardening of the spectrum at approximately 2x10**16 eV and a
significant steepening at c. 8x10**16 eV. These observations challenge the view
that the spectrum is a single power law between knee and ankle. Possible
scenarios generating such features are discussed in terms of astrophysical
processes that may explain the transition region from galactic to extragalactic
origin of cosmic rays.Comment: accepted by Astroparticle Physics June 201
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
- âŠ