23 research outputs found

    Differential Regulation of Myocardial E3 Ligases and Deubiquitinases in Ischemic Heart Failure

    Get PDF
    The pathological changes of ubiquitination and deubiquitination following myocardial infarction (MI) and chronic heart failure (CHF) have been sparsely examined. We investigated the expression of muscle-specific E3 ubiquitin ligases and deubiquitinases in MI and CHF. Therefore, mice were assigned to coronary artery ligation for 3 days or 10 weeks as well as for sham operation (each n = 10). Expression of E3 ligases (MAFBX, MURF1, CHIP, ITCH, MDM2) and deubiquitinases (A20, CYLD, UCH-L1, USP14, USP19) was determined. After MI and in CHF, the mRNA expression of MURF1, CHIP and MDM2 (all p < 0.05) was decreased. Protein expression analyses revealed that ITCH expression decreased in CHF (p = 0.01), whereas MDM2 expression increased in MI (p = 0.02) and decreased in CHF (p = 0.02). Except for USP19 mRNA expression that decreased at 3 days and 10 weeks (both p < 0.01), the expression of other deubiquitinases remained unaffected after MI and CHF. The expression of myocardial E3 ligases is differentially regulated following MI, raising the question of whether an upstream regulation exists that is activated by MI for tissue protection or whether the downregulation of E3 ligases enables myocardial hypertrophy following MI

    Everolimus-Induced Immune Effects after Heart Transplantation: A Possible Tool for Clinicians to Monitor Patients at Risk for Transplant Rejection

    Get PDF
    Background: Patients treated with an inhibitor of the mechanistic target of rapamycin (mTORI) in a calcineurin inhibitor (CNI)-free immunosuppressive regimen after heart transplantation (HTx) show a higher risk for transplant rejection. We developed an immunological monitoring tool that may improve the identification of mTORI-treated patients at risk for rejection. Methods: Circulating dendritic cells (DCs) and regulatory T cells (Tregs) were analysed in 19 mTORI- and 20 CNI-treated HTx patients by flow cytometry. Principal component and cluster analysis were used to identify patients at risk for transplant rejection. Results: The percentages of total Tregs (p = 0.02) and CD39+ Tregs (p = 0.05) were higher in mTORI-treated patients than in CNI-treated patients. The principal component analysis revealed that BDCA1+, BDCA2+ and BDCA4+ DCs as well as total Tregs could distinguish between non-rejecting and rejecting mTORI-treated patients. Most mTORI-treated rejectors showed higher levels of BDCA2+ and BDCA4+ plasmacytoid DCs and lower levels of BDCA1+ myeloid DCs and Tregs than mTORI non-rejectors. Conclusion: An mTORI-based immunosuppressive regimen induced a sufficient, tolerance-promoting reaction in Tregs, but an insufficient, adverse effect in DCs. On the basis of patient-specific immunological profiles, we established a flow cytometry-based monitoring tool that may be helpful in identifying patients at risk for rejection

    Immune Monitoring Assay for Extracorporeal Photopheresis Treatment Optimization After Heart Transplantation

    Get PDF
    Background: Extracorporeal photopheresis (ECP) induces immunological changes that lead to a reduced risk of transplant rejection. The aim of the present study was to determine optimum conditions for ECP treatment by analyzing a variety of toleranceinducing immune cells to optimize the treatment. Methods: Ten ECP treatments were applied to each of 17 heart-transplant patients from month 3 to month 9 post-HTx. Blood samples were taken at baseline, three times during treatment, and four months after the last ECP treatment. The abundance of subsets of tolerance-inducing regulatory T cells (Tregs) and dendritic cells (DCs) in the samples was determined by flow cytometry. A multivariate statistical model describing the immunological status of rejection-free heart transplanted patients was used to visualize the patient-specific immunological improvement induced by ECP. Results: All BDCA+ DC subsets (BDCA1+ DCs: p < 0.01, BDCA2+ DCs: p < 0.01, BDCA3+ DCs: p < 0.01, BDCA4+ DCs: p < 0.01) as well as total Tregs (p < 0.01) and CD39+ Tregs (p < 0.01) increased during ECP treatment, while CD62L+ Tregs decreased (p < 0.01). The cell surface expression level of BDCA1 (p < 0.01) and BDCA4 (p < 0.01) on DCs as well as of CD120b (p < 0.01) on Tregs increased during the study period, while CD62L expression on Tregs decreased significantly (p = 0.04). The cell surface expression level of BDCA2 (p = 0.47) and BDCA3 (p = 0.22) on DCs as well as of CD39 (p = 0.14) and CD147 (p = 0.08) on Tregs remained constant during the study period. A cluster analysis showed that ECP treatment led to a sustained immunological improvement. Conclusions: We developed an immune monitoring assay for ECP treatment after heart transplantation by analyzing changes in tolerance-inducing immune cells. This assay allowed differentiation of patients who did and did not show immunological improvement. Based on these results, we propose classification criteria that may allow optimization of the duration of ECP treatment

    Differential Regulation of Myocardial E3 Ligases and Deubiquitinases in Ischemic Heart Failure

    No full text
    The pathological changes of ubiquitination and deubiquitination following myocardial infarction (MI) and chronic heart failure (CHF) have been sparsely examined. We investigated the expression of muscle-specific E3 ubiquitin ligases and deubiquitinases in MI and CHF. Therefore, mice were assigned to coronary artery ligation for 3 days or 10 weeks as well as for sham operation (each n = 10). Expression of E3 ligases (MAFBX, MURF1, CHIP, ITCH, MDM2) and deubiquitinases (A20, CYLD, UCH-L1, USP14, USP19) was determined. After MI and in CHF, the mRNA expression of MURF1, CHIP and MDM2 (all p &lt; 0.05) was decreased. Protein expression analyses revealed that ITCH expression decreased in CHF (p = 0.01), whereas MDM2 expression increased in MI (p = 0.02) and decreased in CHF (p = 0.02). Except for USP19 mRNA expression that decreased at 3 days and 10 weeks (both p &lt; 0.01), the expression of other deubiquitinases remained unaffected after MI and CHF. The expression of myocardial E3 ligases is differentially regulated following MI, raising the question of whether an upstream regulation exists that is activated by MI for tissue protection or whether the downregulation of E3 ligases enables myocardial hypertrophy following MI

    Apoptotic Cell Death in Bicuspid-Aortic-Valve-Associated Aortopathy

    No full text
    The bicuspid aortic valve (BAV) is the most common cardiovascular congenital abnormality and is frequently associated with proximal aortopathy. We analyzed the tissues of patients with bicuspid and tricuspid aortic valve (TAV) regarding the protein expression of the receptor for advanced glycation products (RAGE) and its ligands, the advanced glycation end products (AGE), as well as the S100 calcium-binding protein A6 (S100A6). Since S100A6 overexpression attenuates cardiomyocyte apoptosis, we investigated the diverse pathways of apoptosis and autophagic cell death in the human ascending aortic specimen of 57 and 49 patients with BAV and TAV morphology, respectively, to identify differences and explanations for the higher risk of patients with BAV for severe cardiovascular diseases. We found significantly increased levels of RAGE, AGE and S100A6 in the aortic tissue of bicuspid patients which may promote apoptosis via the upregulation of caspase-3 activity. Although increased caspase-3 activity was not detected in BAV patients, increased protein expression of the 48 kDa fragment of vimentin was detected. mTOR as a downstream protein of Akt was significantly higher in patients with BAV, whereas Bcl-2 was increased in patients with TAV, assuming a better protection against apoptosis. The autophagy-related proteins p62 and ERK1/2 were increased in patients with BAV, assuming that cells in bicuspid tissue are more likely to undergo apoptotic cell death leading to changes in the wall and finally to aortopathies. We provide first-hand evidence of increased apoptotic cell death in the aortic tissue of BAV patients which may thus provide an explanation for the increased risk of structural aortic wall deficiency possibly underlying aortic aneurysm formation or acute dissection

    Myostatin/AKT/FOXO Signaling Is Altered in Human Non-Ischemic Dilated Cardiomyopathy

    No full text
    Disturbances in the ubiquitin proteasome system, and especially changes of the E3 ligases, are subjects of interest when searching for causes and therapies for cardiomyopathies. The aim of this study was to clarify whether the myostatin/AKT/forkhead box O (FOXO) pathway, which regulates the expression of the E3 ligases muscle atrophy F-box gene (MAFbx) and muscle ring-finger protein-1 (MuRF1), is changed in dilated cardiomyopathy of ischemic origin (IDCM) and dilated cardiomyopathy of non-ischemic origin (NIDCM). The mRNA and protein expression of myostatin, AKT, FOXO1, FOXO3, MAFbx and MuRF1 were quantified by real-time polymerase chain reaction and ELISA, respectively, in myocardial tissue from 26 IDCM and 23 NIDCM patients. Septal tissue from 17 patients undergoing Morrow resection served as a control. MAFbx and FOXO1 mRNA and protein expression (all p p p = 0.02) were decreased in NIDCM patients compared to the control group. Apart from decreases of AKT and MAFbx mRNA expression (both p < 0.01), no significant differences were detected in IDCM patients compared to the control group. Our results demonstrate that the myostatin/AKT/FOXO pathway is altered in NIDCM but not in IDCM patients. FOXO1 seems to be an important drug target for regulating the expression of MAFbx in NIDCM patients

    Differential Regulation of Myocardial E3 Ligases and Deubiquitinases in Ischemic Heart Failure

    No full text
    The pathological changes of ubiquitination and deubiquitination following myocardial infarction (MI) and chronic heart failure (CHF) have been sparsely examined. We investigated the expression of muscle-specific E3 ubiquitin ligases and deubiquitinases in MI and CHF. Therefore, mice were assigned to coronary artery ligation for 3 days or 10 weeks as well as for sham operation (each n = 10). Expression of E3 ligases (MAFBX, MURF1, CHIP, ITCH, MDM2) and deubiquitinases (A20, CYLD, UCH-L1, USP14, USP19) was determined. After MI and in CHF, the mRNA expression of MURF1, CHIP and MDM2 (all p < 0.05) was decreased. Protein expression analyses revealed that ITCH expression decreased in CHF (p = 0.01), whereas MDM2 expression increased in MI (p = 0.02) and decreased in CHF (p = 0.02). Except for USP19 mRNA expression that decreased at 3 days and 10 weeks (both p < 0.01), the expression of other deubiquitinases remained unaffected after MI and CHF. The expression of myocardial E3 ligases is differentially regulated following MI, raising the question of whether an upstream regulation exists that is activated by MI for tissue protection or whether the downregulation of E3 ligases enables myocardial hypertrophy following MI

    Differential Regulation of Myocardial E3 Ligases and Deubiquitinases in Ischemic Heart Failure

    No full text
    The pathological changes of ubiquitination and deubiquitination following myocardial infarction (MI) and chronic heart failure (CHF) have been sparsely examined. We investigated the expression of muscle-specific E3 ubiquitin ligases and deubiquitinases in MI and CHF. Therefore, mice were assigned to coronary artery ligation for 3 days or 10 weeks as well as for sham operation (each n = 10). Expression of E3 ligases (MAFBX, MURF1, CHIP, ITCH, MDM2) and deubiquitinases (A20, CYLD, UCH-L1, USP14, USP19) was determined. After MI and in CHF, the mRNA expression of MURF1, CHIP and MDM2 (all p p = 0.01), whereas MDM2 expression increased in MI (p = 0.02) and decreased in CHF (p = 0.02). Except for USP19 mRNA expression that decreased at 3 days and 10 weeks (both p < 0.01), the expression of other deubiquitinases remained unaffected after MI and CHF. The expression of myocardial E3 ligases is differentially regulated following MI, raising the question of whether an upstream regulation exists that is activated by MI for tissue protection or whether the downregulation of E3 ligases enables myocardial hypertrophy following MI

    Differential Regulation of Myocardial E3 Ligases and Deubiquitinases in Ischemic Heart Failure

    No full text
    The pathological changes of ubiquitination and deubiquitination following myocardial infarction (MI) and chronic heart failure (CHF) have been sparsely examined. We investigated the expression of muscle-specific E3 ubiquitin ligases and deubiquitinases in MI and CHF. Therefore, mice were assigned to coronary artery ligation for 3 days or 10 weeks as well as for sham operation (each n = 10). Expression of E3 ligases (MAFBX, MURF1, CHIP, ITCH, MDM2) and deubiquitinases (A20, CYLD, UCH-L1, USP14, USP19) was determined. After MI and in CHF, the mRNA expression of MURF1, CHIP and MDM2 (all p < 0.05) was decreased. Protein expression analyses revealed that ITCH expression decreased in CHF (p = 0.01), whereas MDM2 expression increased in MI (p = 0.02) and decreased in CHF (p = 0.02). Except for USP19 mRNA expression that decreased at 3 days and 10 weeks (both p < 0.01), the expression of other deubiquitinases remained unaffected after MI and CHF. The expression of myocardial E3 ligases is differentially regulated following MI, raising the question of whether an upstream regulation exists that is activated by MI for tissue protection or whether the downregulation of E3 ligases enables myocardial hypertrophy following MI

    Decreased Platelet Specific Receptor Expression of P-Selectin and GPIIb/IIIa Predict Future Non-Surgical Bleeding in Patients after Left Ventricular Assist Device Implantation

    No full text
    Non-surgical bleeding (NSB) is one of the major clinical complications in patients under continuous-flow left ventricular assist device (LVAD) support. The increased shear stress leads to an altered platelet receptor composition. Whether these changes increase the risk for NSB is unclear. Thus, we compared the platelet receptor composition of patients with (bleeder group, n = 18) and without NSB (non-bleeder group, n = 18) prior to LVAD implantation. Blood samples were obtained prior to LVAD implantation and after bleeding complications in the post-implant period. Platelet receptor expression of GPIb&alpha;, GPIIb/IIIa, P-selectin and CD63 as well as intra-platelet oxidative stress levels were quantified by flow cytometry. Bleeders and non-bleeders were comparable regarding clinical characteristics, von Willebrand factor diagnostics and the aggregation capacity before and after LVAD implantation (p &gt; 0.05). LVAD patients in the bleeder group suffered from gastrointestinal bleeding (33%; n = 6), epistaxis (22%; n = 4), hematuria or hematoma (17%; n = 3, respectively) and cerebral bleeding (11%; n = 2). Prior to LVAD implantation, a restricted surface expression of the platelet receptors P-selectin and GPIIb/IIIa was observed in the bleeder group (P-selectin: 7.2 &plusmn; 2.6%; GPIIb/IIIa: 26,900 &plusmn; 13,608 U) compared to non-bleeders (P-selectin: 12.4 &plusmn; 8.1%, p = 0.02; GPIIb/IIIa: 36,259 &plusmn; 9914 U; p = 0.02). We hypothesized that the reduced platelet receptor expression of P-selectin and GPIIb/IIIa prior to LVAD implantation may be linked to LVAD-related NSB
    corecore