397 research outputs found

    Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1^{-1} from a metallic spintronic emitter

    Get PDF
    To explore the capabilities of metallic spintronic thin-film stacks as a source of intense and broadband terahertz electromagnetic fields, we excite a W/CoFeB/Pt trilayer on a large-area glass substrate (diameter of 7.5 cm) by a femtosecond laser pulse (energy 5.5 mJ, duration 40 fs, wavelength 800 nm). After focusing, the emitted terahertz pulse is measured to have a duration of 230 fs, a peak field of 300 kV cm−1^{-1} and an energy of 5 nJ. In particular, the waveform exhibits a gapless spectrum extending from 1 to 10 THz at 10% of amplitude maximum, thereby facilitating nonlinear control over matter in this difficult-to-reach frequency range and on the sub-picosecond time scale.Comment: 7 pages, 4 figure

    Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films

    Get PDF
    We demonstrate stable and reversible current induced switching of large-area (>100  μm2> 100\;\mu m^2) antiferromagnetic domains in NiO/Pt by performing concurrent transport and magneto-optical imaging measurements in an adapted Kerr microscope. By correlating the magnetic images of the antiferromagnetic domain changes and magneto-transport signal response in these current-induced switching experiments, we disentangle magnetic and non-magnetic contributions to the transport signal. Our table-top approach establishes a robust procedure to subtract the non-magnetic contributions in the transport signal and extract the spin-Hall magnetoresistance response associated with the switching of the antiferromagnetic domains enabling one to deduce details of the antiferromagnetic switching from simple transport measurements.Comment: 12+2 pages, 3+2 figures, V2: Corrected equation for R_transv calculation, results unaffecte

    Tunable steady-state domain wall oscillator with perpendicular magnetic anisotropy

    Full text link
    We theoretically study domain wall oscillations upon the injection of a dc current through a geometrically constrained wire with perpendicular magnetic anisotropy. The oscillation frequency spectrum can be tuned by the injected current density, but additionally by the application of an external magnetic field independent of the power. The results of analytical calculations are supported by micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation. The simple concept of our localized steady-state oscillator might prove useful as a nanoscale microwave generator with possible applications in telecommunication or for rf-assisted writing in magnetic hard drives.Comment: 10 pages, 3 figure
    • …
    corecore