176 research outputs found

    Precise comparison of the Gaussian expansion method and the Gamow shell model

    Get PDF
    We perform a detailed comparison of results of the Gamow Shell Model (GSM) and the Gaussian Expansion Method (GEM) supplemented by the complex scaling (CS) method for the same translationally-invariant cluster-orbital shell model (COSM) Hamiltonian. As a benchmark test, we calculate the ground state 0+0^{+} and the first excited state 2+2^{+} of mirror nuclei 6^{6}He and 6^{6}Be in the model space consisting of two valence nucleons in pp-shell outside of a 4^{4}He core. We find a good overall agreement of results obtained in these two different approaches, also for many-body resonances.Comment: 8 pages, 7 figures. Submitted to PR

    Projected Constraints on Modified Gravity Cosmologies from 21 cm Intensity Mapping

    Get PDF
    We present projected constraints on modified gravity models from the observational technique known as 21 cm intensity mapping, where cosmic structure is detected without resolving individual galaxies. The resulting map is sensitive to both BAO and weak lensing, two of the most powerful cosmological probes. It is found that a 200 m x 200 m cylindrical telescope, sensitive out to z=2.5, would be able to distinguish DGP from most dark energy models, and constrain the Hu & Sawicki f(R) model to |f_{R0}| < 9*10^(-6) at 95% confidence. The latter constraint makes extensive use of the lensing spectrum in the nonlinear regime. These results show that 21 cm intensity mapping is not only sensitive to modifications of the standard model's expansion history, but also to structure growth. This makes intensity mapping a powerful and economical technique, achievable on much shorter time scales than optical experiments that would probe the same era.Comment: 10 pages, 5 figures, 1 table. Added references and expanded discussion. As resubmitted to Phys. Rev. D, in response to reviewer comment

    Algorithms for FFT Beamforming Radio Interferometers

    Full text link
    Radio interferometers consisting of identical antennas arranged on a regular lattice permit fast Fourier transform beamforming, which reduces the correlation cost from O(n2)\mathcal{O}(n^2) in the number of antennas to O(nlogn)\mathcal{O}(n\log n). We develop a formalism for describing this process and apply this formalism to derive a number of algorithms with a range of observational applications. These include algorithms for forming arbitrarily pointed tied-array beams from the regularly spaced Fourier-transform formed beams, sculpting the beams to suppress sidelobes while only losing percent-level sensitivity, and optimally estimating the position of a detected source from its observed brightness in the set of beams. We also discuss the effect that correlations in the visibility-space noise, due to cross-talk and sky contributions, have on the optimality of Fourier transform beamforming, showing that it does not strictly preserve the sky information of the n2n^2 correlation, even for an idealized array. Our results have applications to a number of upcoming interferometers, in particular the Canadian Hydrogen Intensity Mapping Experiment--Fast Radio Burst (CHIME/FRB) project.Comment: 17 pages, 4 figures, accepted to Ap

    Near term measurements with 21 cm intensity mapping: neutral hydrogen fraction and BAO at z<2

    Full text link
    It is shown that 21 cm intensity mapping could be used in the near term to make cosmologically useful measurements. Large scale structure could be detected using existing radio telescopes, or using prototypes for dedicated redshift survey telescopes. This would provide a measure of the mean neutral hydrogen density, using redshift space distortions to break the degeneracy with the linear bias. We find that with only 200 hours of observing time on the Green Bank Telescope, the neutral hydrogen density could be measured to 25% precision at redshift 0.54<z<1.09. This compares favourably to current measurements, uses independent techniques, and would settle the controversy over an important parameter which impacts galaxy formation studies. In addition, a 4000 hour survey would allow for the detection of baryon acoustic oscillations, giving a cosmological distance measure at 3.5% precision. These observation time requirements could be greatly reduced with the construction of multiple pixel receivers. Similar results are possible using prototypes for dedicated cylindrical telescopes on month time scales, or SKA pathfinder aperture arrays on day time scales. Such measurements promise to improve our understanding of these quantities while beating a path for future generations of hydrogen surveys.Comment: 6 pages, 5 figures. Submitted to Phys. Rev. D. Addressed reviewer comments. Changed figure format, added more detailed technical discussion, and added forecasts for aperture arrays. Added references

    Looking in the axion mirror: An all-sky analysis of stimulated decay

    Full text link
    Axion dark matter (DM) produces echo images of bright radio sources via stimulated decay. These images appear as a faint radio line centered at half the axion mass, with the line width set by the DM velocity dispersion. Due to the kinematics of the decay, the echo can be emitted in the direction nearly opposite to the incoming source of stimulating radiation, meaning that axions effectively behave as imperfect monochromatic mirrors. We present an all-sky analysis of axion DM-induced echo images using extragalactic radio point sources, Galactic supernova remnants (SNRs), and Galactic synchrotron radiation (GSR) as sources of stimulating radiation. The aggregate signal strength is not significantly affected by unknown properties of individual sources of stimulating radiation, which we sample from an empirical distribution to generate an ensemble of realizations for the all-sky signal template. We perform forecasts for CHIME, HERA, CHORD, HIRAX, and BURSTT, finding that they can run as competitive axion experiments simultaneously with other objectives, requiring no new hardware.Comment: 24 pages, 15 figures. Supplementary code and animation at https://github.com/yitiansun/axion-mirro

    A GPU Spatial Processing System for CHIME

    Full text link
    We present an overview of the Graphics Processing Unit (GPU) based spatial processing system created for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). The design employs AMD S9300x2 GPUs and readily-available commercial hardware in its processing nodes to provide a cost- and power-efficient processing substrate. These nodes are supported by a liquid-cooling system which allows continuous operation with modest power consumption and in all but the most adverse conditions. Capable of continuously correlating 2048 receiver-polarizations across 400\,MHz of bandwidth, the CHIME X-engine constitutes the most powerful radio correlator currently in existence. It receives 6.66.6\,Tb/s of channelized data from CHIME's FPGA-based F-engine, and the primary correlation task requires 8.39×10148.39\times10^{14} complex multiply-and-accumulate operations per second. The same system also provides formed-beam data products to commensal FRB and Pulsar experiments; it constitutes a general spatial-processing system of unprecedented scale and capability, with correspondingly great challenges in computation, data transport, heat dissipation, and interference shielding
    corecore