38 research outputs found

    Serum Wisteria Floribunda Agglutinin-Positive Mac-2 Binding Protein Values Predict the Development of Hepatocellular Carcinoma among Patients with Chronic Hepatitis C after Sustained Virological Response

    Get PDF
    Measurement of Wisteria floribundaagglutinin-positive human Mac-2 binding protein (WFA+-M2BP) in serum was recently shown to be a noninvasive method to assess liver fibrosis. The aim of this study was to evaluate the utility of serum WFA+-M2BP values to predict the development of hepatocellular carcinoma (HCC) in patients who achieved a sustained virological response (SVR) by interferon treatment. For this purpose, we retrospectively analyzed 238 patients with SVR who were treated with interferon in our department. Serum WFA+-M2BP values were measured at pre-treatment (pre-Tx), post-treatment (24 weeks after completion of interferon; post-Tx), the time of HCC diagnosis, and the last clinical visit. Of 238 patients with SVR, HCC developed in 16 (6.8%) patients. The average follow-up period was 9.1 years. The cumulative incidence of HCC was 3.4% at 5 years and 7.5% at 10 years. The median pre-Tx and post-Tx WFA+-M2BP values were 1.69 (range: 0.28 to 12.04 cutoff index (COI)) and 0.80 (range: 0.17 to 5.29 COI), respectively. The WFA+-M2BP values decreased significantly after SVR (P 60 years), sex (male), pre-Tx platelet count ( 2.0 COI) were associated with the development of HCC after SVR. Conclusion: Post-Tx WFA+-M2BP (> 2.0 COI) is associated with the risk for development of HCC among patients with SVR. The WFA+-M2BP values could be a new predictor for HCC after SVR

    Synergistic effects of pCO2 and iron availability on nutrient consumption ratio of the Bering Sea phytoplankton community

    Get PDF
    Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin. Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (F-v/F-m) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, F-v/F-m values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future

    Phytoplankton community response to Fe and temperature gradients in the NE (SERIES) and NW (SEEDS) subarctic Pacific Ocean

    Get PDF
    Ship-board iron enrichment bottle experiments were carried out with samples collected at the mesoscale iron fertilization experimental site (SERIES) in the subarctic NE Pacific in the summer of 2002. Samples were collected on Day 14 of the experiment outside the patch that was in a typical high nitrate and low chlorophyll (HNLC) condition. The iron concentration in the incubation bottles ranged from 0.1 to 2.0 nM by adding FeCl3 solution. The increase in chlorophyll-a (chl-a) in the micro (>10 μm) and nano-sized (2–10 μm) fraction was observed as a function of the added iron. Chl-a in the pico-sized fraction (0.7–2 μm) showed no increase with time. Nitrate and silicate were exhausted in the Fe-amended bottles, while those in the control bottle remained at the end of incubation. The relative consumption ratio of silicate to nitrate for the control bottles was significantly higher than that for the Fe-amended bottles. As a hyperbolic relation was found between iron concentration and the rate of increase in Chl-a (specific growth rate) for the micro and nano-sized fraction, the Monod equation was fit to obtain a maximum growth rate (μmax) and a half-saturation constant for iron (KFe). The μmax values were 0.72 and 0.48 d−1 for the micro and nano-sized fraction, respectively. The KFe values were 0.10 and 0.08 nM for the micro and nano-sized fraction, respectively. The μmax agreed with the rate of increase in Chl-a observed in situ for the mesoscale iron fertilization experiment. The μmax value for micro-sized fraction at 12 °C was half of that in the western subarctic Pacific Ocean (SEEDS experiment in 2001), indicating the Chl-a increase rate (potential growth rate) after iron enrichment was much higher in SEEDS than that in SERIES. The KFe values were much lower than that in SEEDS, suggesting that the phytoplankton community in the NE subarctic Pacific Ocean acclimates to a lower ambient Fe concentration. This difference in KFe between SERIES (NE) and SEEDS (NW) may reflect the previously suggested gradient in Fe flux to the subarctic Pacific Ocean. A temperature gradient was also applied to investigate the effect of temperature on the growth response of the phytoplankton community. No obvious effect of temperature increase to 16 °C was found in SERIES, while μmax and KFe changed significantly with temperature in SEEDS

    Phytoplankton processes during a mesoscale iron enrichment in the NE subarctic Pacific: Part I - Biomass and assemblage

    No full text
    We report results from the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES) experiment in waters of the NE subarctic Pacific in which a large scale iron (Fe) enrichment lead to a shift in the phytoplankton assemblage from pico- and nanophytoplankton to one dominated by large diatoms. The phytoplankton response to the added Fe was monitored for 26 days following two infusions into a 77 km(2) patch of seawater. During the course of the experiment, the resulting algal bloom was constrained within the upper 30 m and spread to a region measuring over 1000 km2. Phytoplankton chlorophyll a (chl a) increased from 0.3 mgm(-3) to a peak of 6.3 mgm-3 18 days after the initial addition of Fe. Water-column integrated chl a was enhanced 8-fold, reaching a maximum of 114mgm(-2) on day 17. The resulting bloom is described in two ecological phases based on dominant phytoplankton groups. In Phase 1, which encompassed the initial infusion up to day 10, all size-fractions (0.2-2, 2-20 and > 20 mu m) increased in biomass as indicated by chl a, contributing to a surface standing stock of 2 mg m(-3). In Phase II, from days 10 to 18, the bloom was dominated by microphytoplankton (> 20 mu m), with a concomitant decrease in phytoplankton < 20 mu m. Microphytoplankton, which initially accounted for 25\% of the phytoplankton biomass and increased by a factor of 50, consisted primarily of the permate diatom genera, Pseudo-nitzschia, Neodenticula and Thalassiothrix and the centric diatom genera, Chaetoceros, Rhizosolenia, and Proboscia. Particulate carbon-to-chl a (PC: chl a) ratios for large cells (>= 5 mu m) decreased 5-fold by day 18, indicative of enhanced cellular chl a content and increased phytoplankton contributions to PC. Pennate diatoms were most abundant in the patch, although when converted to biovolume, centric diatoms contributed larger amounts of algal carbon (C) to the bloom. A rapid decline in chl a on day 19 marked the onset of bloom decline. The magnitude, duration and composition of the phytoplankton response to the Fe enrichment clearly depicted a major shift in the structure of the algal assemblage and increased C export potential. (c) 2006 Elsevier Ltd. All rights reserved

    Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters

    No full text
    Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems
    corecore