7 research outputs found

    Patterns on the numerical duplication by their admissibility degree

    Full text link
    We develop the theory of patterns on numerical semigroups in terms of the admissibility degree. We prove that the Arf pattern induces every strongly admissible pattern, and determine all patterns equivalent to the Arf pattern. We study patterns on the numerical duplication SdES \Join^d E when d0d \gg0. We also provide a definition of patterns on rings

    Strain Engineered Electrically Pumped SiGeSn Microring Lasers on Si

    Get PDF
    SiGeSn holds great promise for enabling fully group-IV integrated photonics operating at wavelengths extending in the mid-infrared range. Here, we demonstrate an electrically pumped GeSn microring laser based on SiGeSn/GeSn heterostructures. The ring shape allows for enhanced strain relaxation, leading to enhanced optical properties, and better guiding of the carriers into the optically active region. We have engineered a partial undercut of the ring to further promote strain relaxation while maintaining adequate heat sinking. Lasing is measured up to 90 K, with a 75 K T0. Scaling of the threshold current density as the inverse of the outer circumference is linked to optical losses at the etched surface, limiting device performance. Modeling is consistent with experiments across the range of explored inner and outer radii. These results will guide additional device optimization, aiming at improving electrical injection and using stressors to increase the bandgap directness of the active material

    CMOS-Compatible Bias-Tunable Dual-Band Detector Based on GeSn/Ge/Si Coupled Photodiodes

    Get PDF
    Infrared (IR) multispectral detection is attracting increasing interest with the rising demand for high spectral sensitivity, room temperature operation, CMOS-compatible devices. Here, we present a two-terminal dual-band detector, which provides a bias-switchable spectral response in two distinct IR bands. The device is obtained from a vertical GeSn/Ge/Si stack, forming a double junction n-i-p-i-n structure, epitaxially grown on a Si wafer. The photoresponse can be switched by inverting the bias polarity between the near and the short-wave IR bands, with specific detectivities of 1.9 × 1010 and 4.0 × 109 cm·(Hz)1/2/W, respectively. The possibility of detecting two spectral bands with the same pixel opens up interesting applications in the field of IR imaging and material recognition, as shown in a solvent detection test. The continuous voltage tuning, combined with the nonlinear photoresponse of the detector, enables a novel approach to spectral analysis, demonstrated by identifying the wavelength of a monochromatic beam

    Modeling and design of an electrically pumped SiGeSn microring laser

    Get PDF
    We present a suspended SiGeSn microring laser design that enables strain relaxation of the material layer stack, electrical pumping and adequate heat sinking. Using both strain and composition as two degrees of freedom to engineer the band structure, a direct bandgap is obtained in the gain material of a double heterostructure layer stack, and the L- to Γ-valley energy difference increased to 78 meV, by 66% compared to a non-underetched structure. The temperature dependent current threshold is modeled for the designed device and determined to be 18 kA/cm2 at 50 K. The fabrication process is outlined and first experimental electroluminescence results indicating the effectiveness of our approach are reported. At the time this proceedings paper is being submitted, electrically pumped lasing has also been achieved with a similar structure, with results that will be reported in a future publication

    Scalable Pulsed Laser Deposition of Transparent Rear Electrode for Perovskite Solar Cells

    No full text
    Sputtered transparent conducting oxides (TCOs) are widely accepted transparent electrodes for several types of high-efficiency solar cells. However, the different sputtering yield of atoms makes stoichiometric transfer of target material challenging for multi-compounds. Additionally, the high kinetic energies of the arriving species may damage sensitive functional layers beneath. Conversely, pulsed laser deposition (PLD) is operated at higher deposition pressures promoting thermalization of particles. This leads to stoichiometric transfer and additionally reduces the kinetic energy of ablated species. Despite these advantages, PLD is rarely used within the photovoltaic community due to concerns about low deposition rates and the scalability of the technique. In this study, wafer-scale (4-inch) PLD of high-mobility Zr-doped In2O3 (IZrO) TCO for solar cells is demonstrated. IZrO films are grown at room temperature with deposition rate on par with RF-sputtering (>4 nm min−1). As-deposited IZrO films are mostly amorphous and exhibit excellent optoelectronic properties after solid phase crystallization at <200 °C. 100-nm thick films feature a sheet resistance of 21 Ω◻−1 with electron mobilities ≈70 cm2 V−1s−1. PLD-grown IZrO is applied as rear electrode in efficient semi-transparent halide perovskite solar cells leading to the improved stabilized maximum power point efficiency (15.1%) as compared to the cells with sputtered ITO electrodes (11.9%)

    Abstract algebraic geometry

    No full text

    An historical survey of ordinary linear differential equations with a large parameter and turning points

    No full text
    corecore