81 research outputs found
Injection Kinetics and Electronic Structure at the N719 TiO2 Interface Studied by Means of Ultrafast XUV Photoemission Spectroscopy
The method of transient XUV photoemission spectroscopy is developed to investigate the ultrafast dynamics of heterogeneous electron transfer at the interface between the N719 ruthenium dye complex and TiO2 nanoparticles. XUV light from high order harmonic generation is used to probe the electron density distribution among the ground and excited states at the interface after its exposure to a pump laser pulse of 530 nm wavelength. A spectral decomposition of the transient emission signal is used to follow the population and decay dynamics of the involved transient states individually. By comparing results obtained for the N719 TiO2 and N719 FTO interfaces, we can unambiguously reveal the kinetics of electrons injected to TiO2 from the singlet metal to ligand charge transfer MLCT excited state of the dye. With the developed approach, we characterize both the kinetic constants and the absolute binding energies of the singlet and triplet MLCT states of the dye and the state of electrons injected to the conduction band of TiO2. The energy levels of the singlet and triplet states are found to lie 0.7 eV above and 0.2 eV below the conduction band minimum, respectively. This energetic structure gives rise to a strong driving force for injection from the singlet state and a slow electron transfer from the triplet state, the latter being possible due to a partial overlap of the triplet state band of N719 and the conduction band of TiO
Photodetachment study of He^- quartet resonances below the He(n=3) thresholds
The photodetachment cross section of He^- has been measured in the photon
energy range 2.9 eV to 3.3 eV in order to investigate doubly excited states.
Measurements were made channel specific by selectively detecting the residual
He atoms left in a particular excited state following detachment. Three
Feshbach resonances were found in the He(1s2p ^3P)+e^-(epsilon p) partial cross
section: a ^4S resonance below the He(1s3s ^3S) threshold and two ^4P
resonances below the He(1s3p ^3P) threshold. The measured energies of these
doubly excited states are 2.959260(6) eV, 3.072(7) eV and 3.26487(4) eV. The
corresponding widths are found to be 0.20(2) meV, 50(5) meV and 0.61(5) meV.
The measured energies agree well with recent theoretical predictions for the
1s3s4s ^4S, 1s3p^2 ^4P and 1s3p4p ^4P states, respectively, but the widths
deviate noticeably from calculations for 1s3p^2 ^4P and 1s3p4p ^4P states.Comment: 10 pages, 3 figures, LaTeX2e scrartcl, amsmath. Accepted by Journal
of Physics B; minor changes after referee repor
Photodetachment study of the 1s3s4s ^4S resonance in He^-
A Feshbach resonance associated with the 1s3s4s ^{4}S state of He^{-} has
been observed in the He(1s2s ^{3}S) + e^- (\epsilon s) partial photodetachment
cross section. The residual He(1s2s ^{3}S) atoms were resonantly ionized and
the resulting He^+ ions were detected in the presence of a small background. A
collinear laser-ion beam apparatus was used to attain both high resolution and
sensitivity. We measured a resonance energy E_r = 2.959 255(7) eV and a width
\Gamma = 0.19(3) meV, in agreement with a recent calculation.Comment: LaTeX article, 4 pages, 3 figures, 21 reference
Electron affinity of Li: A state-selective measurement
We have investigated the threshold of photodetachment of Li^- leading to the
formation of the residual Li atom in the state. The excited residual
atom was selectively photoionized via an intermediate Rydberg state and the
resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled
both high resolution and sensitivity to be attained. We have demonstrated the
potential of this state selective photodetachment spectroscopic method by
improving the accuracy of Li electron affinity measurements an order of
magnitude. From a fit to the Wigner law in the threshold region, we obtained a
Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
Multiscale Photon Based In Situ and Operando Spectroscopies in Time and Energy Landscapes
Following catalytic reactions, in situ and operando are now the focus of a number of dedicated experiments at light sources which have been developed to track the electronic and molecular structural dynamics of catalysts. The challenges for this goal are two fold first, the development of spectroscopic tools in the energy domain and time domain is required. The photocatalytic processes have early dynamics of tens of femtoseconds, while further reaction takes seconds, minutes, and even hours. Second, a combination of tools to probe processes not only in solids, but also in solutions and at interfaces, is now needed. In this special issue, we present recent developments at the synchrotron facility BESSY II using photon energy from the infrared and extreme ultraviolet up to the soft X ray regime for in situ and operando applications addressing these two major challenges. As this work is a result of contributions from several groups, each section will present the group s activities and related team members involve
LDL-Induced Impairment of Human Vascular Smooth Muscle Cells Repair Function Is Reversed by HMG-CoA Reductase Inhibition
Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins
Diagnostic accuracy of a clinical diagnosis of idiopathic pulmonary fibrosis: An international case-cohort study
We conducted an international study of idiopathic pulmonary fibrosis (IPF) diagnosis among a large group of physicians and compared their diagnostic performance to a panel of IPF experts. A total of 1141 respiratory physicians and 34 IPF experts participated. Participants evaluated 60 cases of interstitial lung disease (ILD) without interdisciplinary consultation. Diagnostic agreement was measured using the weighted kappa coefficient (\u3baw). Prognostic discrimination between IPF and other ILDs was used to validate diagnostic accuracy for first-choice diagnoses of IPF and were compared using the Cindex. A total of 404 physicians completed the study. Agreement for IPF diagnosis was higher among expert physicians (\u3baw=0.65, IQR 0.53-0.72, p20 years of experience (C-index=0.72, IQR 0.0-0.73, p=0.229) and non-university hospital physicians with more than 20 years of experience, attending weekly MDT meetings (C-index=0.72, IQR 0.70-0.72, p=0.052), did not differ significantly (p=0.229 and p=0.052 respectively) from the expert panel (C-index=0.74 IQR 0.72-0.75). Experienced respiratory physicians at university-based institutions diagnose IPF with similar prognostic accuracy to IPF experts. Regular MDT meeting attendance improves the prognostic accuracy of experienced non-university practitioners to levels achieved by IPF experts
Grupo de familiares de indivÃduos com alteração de linguagem: o processo de elaboração e aplicação das atividades terapêuticas
RESUMO Objetivo: descrever o processo de elaboração e aplicação de atividades com grupos de familiares de crianças/adolescentes com alterações de linguagem em acompanhamento fonoaudiológico. Métodos: trata-se de pesquisa qualitativa, de grupo focal, sendo que a coleta de dados ocorreu por meio de diário de campo das discussões em supervisões do estágio de Fonoaudiologia em Alterações de Linguagem da instituição de origem e de gravação de áudio e vÃdeo dos grupos de familiares, contendo transcrição e análise de conteúdo dos dados obtidos. Resultados: as supervisões do estágio estimularam os alunos a amadurecer o raciocÃnio e levantar questões relevantes à abordagem com a famÃlia; nas atividades dos grupos, os participantes foram estimulados a refletirem sobre questões como postura frente à s dificuldades, maneira de lidar com a alteração da linguagem, entre outros. Conclusão: o estudo contribuiu para a descrição do amadurecimento dos estagiários ao longo das supervisões, bem como levantou a discussão sobre abordagem do fonoaudiólogo ao familiar, estimulando-o a construir com o sujeito maneiras de beneficiá-lo em sua alteração de linguagem, sem danificar as relações de vÃnculos e interação
- …