59 research outputs found

    Gaussian Multiplicative Chaos for Gaussian Orthogonal and Symplectic Ensembles

    Full text link
    We study the characteristic polynomials of both the Gaussian Orthogonal and Symplectic Ensembles. We show that for both ensembles, powers of the absolute value of the characteristic polynomials converge in law to Gaussian multiplicative chaos measures after normalization for sufficiently small real powers. The main tool is a new asymptotic relation between the fractional moments of the absolute characteristic polynomials of Gaussian Orthogonal, Unitary, and Symplectic Ensembles.Comment: 73 pages. Version 3: Significant expansion of the proofs in Section 6 and Section 7. Corrections for many minor errors and typo

    Genetic and Biochemical Studies on Protein Phosphorylation in the Circadian Clock of Drosophila Melanogaster

    Get PDF
    Circadian rhythms in physiology and behavior are observed in almost all phyla. Genetically encoded internal clocks generate such rhythms. Identification of gene products required for the generation and maintenance of endogenous circadian near 24-hr rhythms has led to a paradigm of multiple interlocked transcriptional/translational feedback loops as the basis for molecular circadian oscillators in all studied model systems. Protein phosphorylation plays an essential role, regulating the stability, activity and subcellular localization of proteins that constitute the biological clock. This study investigates the role of the protein kinase Doubletime, a Drosophila ortholog of casein kinase Is, in the fruit fly circadian clock. For the first time enzymatically active Doubletime protein is produced and direct phosphorylation of clock protein Period is demonstrated. Phosphorylation sites are identified and their functional significance is tested in a cell culture system. An in vivo analysis of a Period mutant that eliminates one of the identified phosphorylation sites is also carried out. The analysis suggests that phosphorylation dependent regulation of Period protein stability. Transcriptional repressor activity and possibly subcellular localization may all be regulated in an integrated fashion that involves two sequence motifs in the center of the Period protein with high affinity for phosphorylation by Doubletime

    Carbon exchange between a shelf sea and the ocean: The Hebrides Shelf, west of Scotland

    Get PDF
    Global mass balance calculations indicate the majority of particulate organic carbon (POC) exported from shelf seas is transferred via downslope exchange processes. Here we demonstrate the downslope flux of POC from the Hebrides Shelf is approximately 3-to-5-fold larger per unit length/area than the global mean. To reach this conclusion we quantified the offshore transport of particulate and dissolved carbon fractions via the “Ekman Drain”, a strong downwelling feature of the NW European Shelf circulation, and subsequently compared these fluxes to simultaneous regional air-sea CO2 fluxes and on-shore wind-driven Ekman fluxes to constrain the carbon dynamics of this shelf. Along the shelf break we estimate a mean offshelf total carbon (dissolved + particulate) flux of 4.2 tonnes C m−1 d−1 compared to an onshelf flux of 4.5 tonnes C m−1 d−1. Organic carbon represented 3.3% of the onshelf carbon flux but 6.4% of the offshelf flux indicating net organic carbon export. Dissolved organic carbon represented 95% and POC 5% of the exported organic carbon pool. When scaled along the shelf break the total offshelf POC flux (0.007 Tg C d−1) was found to be three times larger than the regional air-sea CO2 ingassing flux (0.0021 Tg C d−1), an order of magnitude larger than the particulate inorganic carbon flux (0.0003 Tg C d−1) but far smaller than the DIC (2.03 Tg C d−1) or DOC (0.13 Tg C d−1) fluxes. Significant spatial heterogeneity in the Ekman drain transport confirms that offshelf carbon fluxes via this mechanism are also spatially heterogeneous. This article is protected by copyright. All rights reserved

    Carbon exchange between a shelf sea and the ocean: The Hebrides Shelf, west of Scotland

    No full text
    Global mass balance calculations indicate the majority of particulate organic carbon (POC) exported from shelf seas is transferred via downslope exchange processes. Here we demonstrate the downslope flux of POC from the Hebrides Shelf is approximately 3-to-5-fold larger per unit length/area than the global mean. To reach this conclusion we quantified the offshore transport of particulate and dissolved carbon fractions via the “Ekman Drain”, a strong downwelling feature of the NW European Shelf circulation, and subsequently compared these fluxes to simultaneous regional air-sea CO2 fluxes and on-shore wind-driven Ekman fluxes to constrain the carbon dynamics of this shelf. Along the shelf break we estimate a mean offshelf total carbon (dissolved?+?particulate) flux of 4.2 tonnes C m?1 d?1 compared to an onshelf flux of 4.5 tonnes C m?1 d?1. Organic carbon represented 3.3% of the onshelf carbon flux but 6.4% of the offshelf flux indicating net organic carbon export. Dissolved organic carbon represented 95% and POC 5% of the exported organic carbon pool. When scaled along the shelf break the total offshelf POC flux (0.007 Tg C d?1) was found to be three times larger than the regional air-sea CO2 ingassing flux (0.0021 Tg C d?1), an order of magnitude larger than the particulate inorganic carbon flux (0.0003 Tg C d?1) but far smaller than the DIC (2.03 Tg C d?1) or DOC (0.13 Tg C d?1) fluxes. Significant spatial heterogeneity in the Ekman drain transport confirms that offshelf carbon fluxes via this mechanism are also spatially heterogeneous. This article is protected by copyright. All rights reserved

    Impacts of Increased Atmospheric CO2 on Ocean Chemistry and Ecosystems

    Get PDF
    Lead Partner: National University of Ireland Galway. Project Partner: Marine InstituteOcean pH is a function of the seawater carbonate system, which is a function of both the influx of CO2 from the atmosphere and the resulting concentration of CO2 in the water (i.e. pCO2). Uptake of anthropogenic carbon dioxide from the atmosphere is reducing ocean pH; a phenomenon referred to as ocean acidification. It is estimated that there has been a decrease of 0.1 pH units in the surface waters of the world’s oceans since the start of the industrial revolution with a reduction of 0.3 – 0.5 forecast by 2100. There is growing concern over the potential consequences of ocean acidification for marine ecosystems and the services they provide for mankind. This project was aimed at enabling the capability and developing the expertise within Ireland to measure and quantify the flux of CO2 into (or out of) the ocean; to monitor seasonal trends in pCO2 and CO2 fluxes; to determine the current baseline state and variability of the carbonate system; and to evaluate the potential impact of future changes on ecosystems with the ultimate aim of contributing to more informed policy development.This project (Grant-Aid Agreement No. SS/CC/07/001(01)) was carried out under the Sea Change strategy with the support of the Marine Institute and the Marine Research Sub-Programme of the National Development Plan 2007–2013. Support was also provided by NUI Galway College Fellowship and by the EPA Fellowship 2006-PhD-AQ-2.Funder: Marine Institut

    Chemical aspects of ocean acidification monitoring in the ICES marine area

    Full text link
    It is estimated that oceans absorb approximately a quarter of the total anthropogenic releases of carbon dioxide to the atmosphere each year. This is leading to acidification of the oceans, which has already been observed through direct measurements. These changes in the ocean carbon system are a cause for concern for the future health of marine ecosystems. A coordinated ocean acidification (OA) monitoring programme is needed that integrates physical, biogeochemical, and biological measurements to concurrently observe the variability and trends in ocean carbon chemistry and evaluate species and ecosystems response to these changes. This report arises from an OSPAR request to ICES for advice on this matter. It considers the approach and tools available to achieve coordinated monitoring of changes in the carbon system in the ICES marine area, i.e. the Northeast Atlantic and Baltic Sea. An objective is to measure long-term changes in pH, carbonate parameters, and saturation states (Ωaragonite and Ωcalcite) in support of assessment of risks to and impacts on marine ecosystems. Painstaking and sensitive methods are necessary to measure changes in the ocean carbonate system over a long period of time (decades) against a background of high natural variability. Information on this variability is detailed in this report. Monitoring needs to start with a research phase, which assesses the scale of short-term variability in different regions. Measurements need to cover a range of waters from estuaries and coastal waters, shelf seas and ocean-mode waters, and abyssal waters where sensitive ecosystems may be present. Emphasis should be placed on key areas at risk, for example high latitudes where ocean acidification will be most rapid, and areas identified as containing ecosystems and habitats that may be vulnerable, e.g. cold-water corals. In nearshore environments, increased production resulting from eutrophication has probably driven larger changes in acidity than CO2 uptake. Although the cause is different, data are equally required from these regions to assess potential ecosystem impact. Analytical methods to support coordinated monitoring are in place. Monitoring of at least two of the four carbonate system parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), pCO2, and pH) alongside other parameters is sufficient to describe the carbon system. There are technological limitations to direct measurement of pH at present, which is likely to change in the next five years. DIC and TA are the most widely measured parameters in discrete samples. The parameter pCO2 is the most common measurement made underway. Widely accepted procedures are available, although further development of quality assurance tools (e.g. proficiency testing) is required. Monitoring is foreseen as a combination of low-frequency, repeat, ship-based surveys enabling collection of extended high quality datasets on horizontal and vertical scales, and high-frequency autonomous measurements for more limited parameter sets using instrumentation deployed on ships of opportunity and moorings. Monitoring of ocean acidification can build on existing activities summarized in this report, e.g. OSPAR eutrophication monitoring. This would be a cost-effective approach to monitoring, although a commitment to sustained funding is required. Data should be reported to the ICES data repository as the primary data centre for OSPAR and HELCOM, thus enabling linkages to other related datasets, e.g. nutrients and integrated ecosystem data. The global ocean carbon measurement community reports to the Carbon Dioxide Information Analysis Center (CDIAC), and it is imperative that monitoring data are also reported to this database. Dialogue between data centres to facilitate an efficient “Report-Once” system is necessary

    The elemental stoichiometry (C, Si, N, P) of the Hebrides Shelf and its role in carbon export

    Get PDF
    A detailed analysis of the internal stoichiometry of a temperate latitude shelf sea system is presented which reveals strong vertical and horizontal gradients in dissolved nutrient and particulate concentrations and in the elemental stoichiometry of those pools. Such gradients have implications for carbon and nutrient export from coastal waters to the open ocean. The mixed layer inorganic nutrient stoichiometry shifted from balanced N:P in winter, to elevated N:P in spring and to depleted N:P in summer, relative to the Redfield ratio. This pattern suggests increased likelihood of P limitation of fast growing phytoplankton species in spring and of N limitation of slower growing species in summer. However, as only silicate concentrations were below potentially limiting concentrations during summer and autumn the stoichiometric shifts in inorganic nutrient N:P are considered due to phytoplankton nutrient preference patterns rather than nutrient exhaustion. Elevated particulate stoichiometries corroborate non-Redfield optima underlying organic matter synthesis and nutrient uptake. Seasonal variation in the stoichiometry of the inorganic and organic nutrient pools has the potential to influence the efficiency of nutrient export. In summer, when organic nutrient concentrations were at their highest and inorganic nutrient concentrations were at their lowest, the organic nutrient pool was comparatively C poor whilst the inorganic nutrient pool was comparatively C rich. The cross-shelf export of these pools at this time would be associated with different efficiencies regardless of the total magnitude of exchange. In autumn the elemental stoichiometries increased with depth in all pools revealing widespread carbon enrichment of shelf bottom waters with P more intensely recycled than N, N more intensely recycled than C, and Si weakly remineralized relative to C. Offshelf carbon fluxes were most efficient via the inorganic nutrient pool, intermediate for the organic nutrient pool and least efficient for the particulate pool. N loss from the shelf however was most efficient via the dissolved organic nutrient pool. Mass balance calculations suggest that 28% of PO43−, 34% of NO3− and 73% of Si drawdown from the mixed layer fails to reappear in the benthic water column thereby indicating the proportion of the nutrient pools that must be resupplied from the ocean each year to maintain shelf wide productivity. Loss to the neighbouring ocean, the sediments, transference to the dissolved organic nutrient pool and higher trophic levels are considered the most likely fate for these missing nutrients

    Activating PER Repressor through a DBT-Directed Phosphorylation Switch

    Get PDF
    Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT), a Drosophila ortholog of human casein kinase I (CKI)ɛ/δ. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER). DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The perS mutation, which is associated with short-period (19-h) circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function
    • …
    corecore